Menu Close

a-point-move-in-such-away-that-its-its-distance-from-the-x-axis-is-alwa-yas-1-5-its-distance-from-origin-find-the-equetion-of-its-path-




Question Number 43190 by MASANJA J last updated on 08/Sep/18
a point move in such away that its   its distance from the x−axis is alwa  yas(1/5) its distance from origin.  find the equetion of its path.
$${a}\:{point}\:{move}\:{in}\:{such}\:{away}\:{that}\:{its}\: \\ $$$${its}\:{distance}\:{from}\:{the}\:{x}−{axis}\:{is}\:{alwa} \\ $$$${yas}\frac{\mathrm{1}}{\mathrm{5}}\:{its}\:{distance}\:{from}\:{origin}. \\ $$$${find}\:{the}\:{equetion}\:{of}\:{its}\:{path}. \\ $$
Commented by MrW3 last updated on 08/Sep/18
sin θ=(1/5)  ⇒tan θ=(1/( (√(24))))=k  eqn.:  y=±kx  with k=(1/( (√(24))))
$$\mathrm{sin}\:\theta=\frac{\mathrm{1}}{\mathrm{5}} \\ $$$$\Rightarrow\mathrm{tan}\:\theta=\frac{\mathrm{1}}{\:\sqrt{\mathrm{24}}}={k} \\ $$$${eqn}.: \\ $$$${y}=\pm{kx} \\ $$$${with}\:{k}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{24}}} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 08/Sep/18
let the point be(α,β)  (1/5)(√(α^2 +β^2 )) =β  α^2 +β^2 =25β^2   so the locus is  ∝^2 −24β^2 =0  x^2 −24y^2 =0
$${let}\:{the}\:{point}\:{be}\left(\alpha,\beta\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{5}}\sqrt{\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} }\:=\beta \\ $$$$\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} =\mathrm{25}\beta^{\mathrm{2}} \\ $$$${so}\:{the}\:{locus}\:{is} \\ $$$$\propto^{\mathrm{2}} −\mathrm{24}\beta^{\mathrm{2}} =\mathrm{0} \\ $$$${x}^{\mathrm{2}} −\mathrm{24}{y}^{\mathrm{2}} =\mathrm{0} \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 08/Sep/18
yes...
$${yes}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *