Menu Close

A-polygon-of-nine-sides-each-of-length-2-is-inscribed-in-a-circle-the-radius-of-the-circle-ans-cosec-20-




Question Number 48852 by vajpaithegrate@gmail.com last updated on 29/Nov/18
A polygon of nine sides each of length 2  is inscribed in a circle,the radius of the   circle  ans:cosec 20
$$\mathrm{A}\:\mathrm{polygon}\:\mathrm{of}\:\mathrm{nine}\:\mathrm{sides}\:\mathrm{each}\:\mathrm{of}\:\mathrm{length}\:\mathrm{2} \\ $$$$\mathrm{is}\:\mathrm{inscribed}\:\mathrm{in}\:\mathrm{a}\:\mathrm{circle},\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{the}\: \\ $$$$\mathrm{circle} \\ $$$$\mathrm{ans}:\mathrm{cosec}\:\mathrm{20} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 29/Nov/18
nine(09)sided polygon   so 9θ=360^o   so θ=40^o   sin20^o =((((a/2)))/R)  sin20^o =(1/R)  R=cosec20^o
$${nine}\left(\mathrm{09}\right){sided}\:{polygon}\: \\ $$$${so}\:\mathrm{9}\theta=\mathrm{360}^{{o}} \:\:{so}\:\theta=\mathrm{40}^{{o}} \\ $$$${sin}\mathrm{20}^{{o}} =\frac{\left(\frac{{a}}{\mathrm{2}}\right)}{{R}} \\ $$$${sin}\mathrm{20}^{{o}} =\frac{\mathrm{1}}{{R}}\:\:{R}={cosec}\mathrm{20}^{{o}} \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 29/Nov/18
Commented by vajpaithegrate@gmail.com last updated on 29/Nov/18
tnq sir
$$\mathrm{tnq}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *