Menu Close

A-polynomial-function-f-x-satisfies-f-x-f-1-x-2f-x-2f-1-x-x-0-and-f-2-18-then-f-3-is-equal-to-




Question Number 21940 by Tinkutara last updated on 07/Oct/17
A polynomial function f(x) satisfies  f(x)f((1/x)) = 2f(x) + 2f((1/x)); x ≠ 0 and  f(2) = 18, then f(3) is equal to
Apolynomialfunctionf(x)satisfiesf(x)f(1x)=2f(x)+2f(1x);x0andf(2)=18,thenf(3)isequalto
Commented by ajfour last updated on 07/Nov/18
No one solved this, if correct  its a good one!
Noonesolvedthis,ifcorrectitsagoodone!
Answered by rahul 19 last updated on 08/Nov/18
56 ?  Got the function 2(x^3 +1).....
56?Gotthefunction2(x3+1)..
Commented by ajfour last updated on 08/Nov/18
steps please, dont know answer!
stepsplease,dontknowanswer!
Answered by rahul 19 last updated on 08/Nov/18
Let f(x)= a_0 x^n +a_1 x^(n−1) +....+a_(n−1) x+a_n .  Acc . to given condition,  (a_0 x^n +a_1 x^(n−1) ......+a_n )((a_0 /x^n )+(a_1 /x^(n−1) )+......a_n )   = 2[(a_0 x^n +a_1 x^(n−1) ....+a_n ) + ((a_0 /x^(n ) ) +(a_1 /x^(n−1) )....+a_n )]  ⇒ On comparing coeff. of x^n ,  a_0 a_n = 2a_(0 ) ⇒ a_n =2  On comparing coeff. of x^(n−1) ,  a_(n−1) =0.....  ........similarly,a_(n−2) =.....=a_1 =0  and a_0 = ∓2.  ∴ f(x) = 2(∓x^n +1).  Now in this case   f(2)=18   ⇒ f(x)= 2(x^3 +1)  ⇒ f(3)=56.
Letf(x)=a0xn+a1xn1+.+an1x+an.Acc.togivencondition,(a0xn+a1xn1+an)(a0xn+a1xn1+an)=2[(a0xn+a1xn1.+an)+(a0xn+a1xn1.+an)]Oncomparingcoeff.ofxn,a0an=2a0an=2Oncomparingcoeff.ofxn1,an1=0....similarly,an2=..=a1=0anda0=2.f(x)=2(xn+1).Nowinthiscasef(2)=18f(x)=2(x3+1)f(3)=56.
Commented by ajfour last updated on 08/Nov/18
Yes Rahul Sir, Thanks.
YesRahulSir,Thanks.
Answered by ajfour last updated on 08/Nov/18
(a_n x^n +a_(n−1) x^(n−1) +...+a_1 x+a_0 )  ×(1/x^n )(a_n +a_(n−1) x+....+a_1 x^(n−1) +a_0 x^n )   = (1/x^n )[a_n a_0 x^(2n) +(a_(n−1) a_0 +a_n a_1 )x^(2n−1) +....    .....+(a_n a_n +a_(n−1) a_(n−1) +...+a_0 a_0 +)x^n  +...  ...+(a_1 a_n +a_0 a_(n−1) )x+a_0 a_n  ]    = (2/x^n )[(a_n x^(2n) +a_(n−1) x^(2n−1) +....        ....+a_0 x^n )+(a_0 x^n +a_1 x^(n−1) +...         ....+a_(n−1) x+a_n )]  comparing coeffs.      a_n a_0  = 2a_n     ⇒  a_0 = 2      a_(n−1) a_0 +a_n a_1 = 2a_(n−1)   ⇒ a_1 =0      a_n a_2 +a_(n−1) a_1 +a_(n−2) a_0 = 2a_(n−2)                 ⇒  a_2 = 0  and so on..  So  f(x)= a_n x^n +2          f(1)×f(1)=4f(1)  ⇒    f(1)= 0, 4  ⇒      a_n +2 = 0, 4              ⇒  a_n = ±2  ⇒   f(2)=±2(2^n +1) = 18  So   a_n = 2  &  n= 3          f(3)= 2(3^3 +1)= 56 .
(anxn+an1xn1++a1x+a0)×1xn(an+an1x+.+a1xn1+a0xn)=1xn[ana0x2n+(an1a0+ana1)x2n1+...+(anan+an1an1++a0a0+)xn+Missing or unrecognized delimiter for \left=2xn[(anx2n+an1x2n1+..+a0xn)+(a0xn+a1xn1+.+an1x+an)]comparingcoeffs.ana0=2ana0=2an1a0+ana1=2an1a1=0ana2+an1a1+an2a0=2an2a2=0andsoon..Sof(x)=anxn+2f(1)×f(1)=4f(1)f(1)=0,4an+2=0,4an=±2f(2)=±2(2n+1)=18Soan=2&n=3f(3)=2(33+1)=56.

Leave a Reply

Your email address will not be published. Required fields are marked *