Question Number 21940 by Tinkutara last updated on 07/Oct/17

Commented by ajfour last updated on 07/Nov/18

Answered by rahul 19 last updated on 08/Nov/18

Commented by ajfour last updated on 08/Nov/18

Answered by rahul 19 last updated on 08/Nov/18
![Let f(x)= a_0 x^n +a_1 x^(n−1) +....+a_(n−1) x+a_n . Acc . to given condition, (a_0 x^n +a_1 x^(n−1) ......+a_n )((a_0 /x^n )+(a_1 /x^(n−1) )+......a_n ) = 2[(a_0 x^n +a_1 x^(n−1) ....+a_n ) + ((a_0 /x^(n ) ) +(a_1 /x^(n−1) )....+a_n )] ⇒ On comparing coeff. of x^n , a_0 a_n = 2a_(0 ) ⇒ a_n =2 On comparing coeff. of x^(n−1) , a_(n−1) =0..... ........similarly,a_(n−2) =.....=a_1 =0 and a_0 = ∓2. ∴ f(x) = 2(∓x^n +1). Now in this case f(2)=18 ⇒ f(x)= 2(x^3 +1) ⇒ f(3)=56.](https://www.tinkutara.com/question/Q47313.png)
Commented by ajfour last updated on 08/Nov/18

Answered by ajfour last updated on 08/Nov/18
![(a_n x^n +a_(n−1) x^(n−1) +...+a_1 x+a_0 ) ×(1/x^n )(a_n +a_(n−1) x+....+a_1 x^(n−1) +a_0 x^n ) = (1/x^n )[a_n a_0 x^(2n) +(a_(n−1) a_0 +a_n a_1 )x^(2n−1) +.... .....+(a_n a_n +a_(n−1) a_(n−1) +...+a_0 a_0 +)x^n +... ...+(a_1 a_n +a_0 a_(n−1) )x+a_0 a_n ] = (2/x^n )[(a_n x^(2n) +a_(n−1) x^(2n−1) +.... ....+a_0 x^n )+(a_0 x^n +a_1 x^(n−1) +... ....+a_(n−1) x+a_n )] comparing coeffs. a_n a_0 = 2a_n ⇒ a_0 = 2 a_(n−1) a_0 +a_n a_1 = 2a_(n−1) ⇒ a_1 =0 a_n a_2 +a_(n−1) a_1 +a_(n−2) a_0 = 2a_(n−2) ⇒ a_2 = 0 and so on.. So f(x)= a_n x^n +2 f(1)×f(1)=4f(1) ⇒ f(1)= 0, 4 ⇒ a_n +2 = 0, 4 ⇒ a_n = ±2 ⇒ f(2)=±2(2^n +1) = 18 So a_n = 2 & n= 3 f(3)= 2(3^3 +1)= 56 .](https://www.tinkutara.com/question/Q47323.png)