Menu Close

A-positive-integer-such-as-4334-is-a-palindrome-if-it-reads-the-same-forwards-or-backwards-What-is-the-only-prime-palindrome-with-an-even-number-of-digits-




Question Number 100733 by john santu last updated on 28/Jun/20
A positive integer such as 4334 is  a palindrome if it reads the same  forwards or backwards. What is  the only prime palindrome with an  even number of digits?
Apositiveintegersuchas4334isapalindromeifitreadsthesameforwardsorbackwards.Whatistheonlyprimepalindromewithanevennumberofdigits?
Commented by Rasheed.Sindhi last updated on 28/Jun/20
11  Any other palindrome must  be divisible by 11 and hence  composite.
11Anyotherpalindromemustbedivisibleby11andhencecomposite.
Commented by 1549442205 last updated on 28/Jun/20
Thank you,sir.It is correct perfectly.
Thankyou,sir.Itiscorrectperfectly.
Commented by Rasheed.Sindhi last updated on 28/Jun/20
1331=11^3   So it′s not prime.
1331=113Soitsnotprime.
Commented by 1549442205 last updated on 07/Jul/20
We prove the general clause following:  ”a arbirtary palindrome number is  always divisible by 11”.Indeedly,a palindrome  is always expressed in form:  A=a_1 a_2 ...a_n a_n a_(n−1) .....a_1 =^(−) a_1 a_2 ...a_n ^(−) .10^n +a_n a_(n−1) ...a_1 ^(−)   =a_1 (10^(2n−1) +1)+10a_2 (10^(2n−3) +1)+...  +10^(n−2) a_(n−1) .(10^3 +1)+10^(n−1) a_n (10+1)  This number is divisible by 11 because  10^(2k+1) +1=(10+1)(10^(2k) −10^(2k−1) +10^(2k−2) −....+1)⋮11
Weprovethegeneralclausefollowing:aarbirtarypalindromenumberisalwaysdivisibleby11.Indeedly,apalindromeisalwaysexpressedinform:A=a1a2ananan1..a1=a1a2an.10n+anan1a1=a1(102n1+1)+10a2(102n3+1)++10n2an1.(103+1)+10n1an(10+1)Thisnumberisdivisibleby11because102k+1+1=(10+1)(102k102k1+102k2.+1)11
Commented by john santu last updated on 28/Jun/20
yes..right
yes..rightyes..right
Commented by john santu last updated on 28/Jun/20
only 11
only11only11

Leave a Reply

Your email address will not be published. Required fields are marked *