Menu Close

A-primitive-of-the-function-defned-by-f-x-x-1-1-x-1-is-A-F-x-x-2-2-x-ln-x-1-B-F-x-x-2-2-ln-x-1-C-F-x-x-2-2-x-ln-1-x-D-F-x-x-ln-x-1-




Question Number 85982 by Rio Michael last updated on 26/Mar/20
A primitive of the function defned by f(x) = x −1 + (1/(x+1)) is   A. F(x) = (x^2 /2) −x + ln(x + 1)    B. F(x) = (x^2 /2) + ln(x−1)  C. F(x) = (x^2 /2)−x + ln(1−x)         D. F(x) = −x + ln(x−1)
Aprimitiveofthefunctiondefnedbyf(x)=x1+1x+1isA.F(x)=x22x+ln(x+1)B.F(x)=x22+ln(x1)C.F(x)=x22x+ln(1x)D.F(x)=x+ln(x1)
Commented by Serlea last updated on 26/Mar/20
Taking the integral, it′s  A
Takingtheintegral,itsA
Commented by jagoll last updated on 26/Mar/20
F(x) = ∫ (x−1+(1/(x+1)))dx  = (1/2)x^2 −x+ ln (x+1)
F(x)=(x1+1x+1)dx=12x2x+ln(x+1)

Leave a Reply

Your email address will not be published. Required fields are marked *