Menu Close

A-projectile-projected-from-the-ground-has-its-direction-of-motion-making-an-angle-pi-4-with-the-horizontal-at-a-height-40-m-Its-initial-velocity-of-projection-is-50-m-s-the-angle-of-projection-is-




Question Number 15591 by Tinkutara last updated on 12/Jun/17
A projectile projected from the ground  has its direction of motion making an  angle (π/4) with the horizontal at a height  40 m. Its initial velocity of projection is  50 m/s, the angle of projection is?
Aprojectileprojectedfromthegroundhasitsdirectionofmotionmakinganangleπ4withthehorizontalataheight40m.Itsinitialvelocityofprojectionis50m/s,theangleofprojectionis?
Answered by mrW1 last updated on 12/Jun/17
u=50m/s  u_x =50cos α  u_y =50sin α  y=u_y t−(1/2)gt^2   x=u_x t  tan θ=(dy/dx)=(dy/dt)×(1/(dx/dt))=((u_y −gt)/u_x )  at y=40m: ϑ=(π/4)  tan (π/4)=((u_y −gt)/u_x )=1  t=((u_y −u_x )/g)  y=u_y ((u_y −u_x )/g)−(g/2)(((u_y −u_x )/g))^2 =40  ((u_y −u_x )/g)[u_y −((u_y −u_x )/2)]=40  ((u_y −u_x )/g)[((u_y +u_x )/2)]=40  u_y ^2 −u_x ^2 =2×40g  u^2 (sin^2  α−cos^2  α)=80g  −u^2 cos 2α=80g  cos 2α=−((80g)/u^2 )=−((800)/(50^2 ))=−0.32  ⇒2α=108.7°  ⇒α=54.3°
u=50m/sux=50cosαuy=50sinαy=uyt12gt2x=uxttanθ=dydx=dydt×1dxdt=uygtuxaty=40m:ϑ=π4tanπ4=uygtux=1t=uyuxgy=uyuyuxgg2(uyuxg)2=40uyuxg[uyuyux2]=40uyuxg[uy+ux2]=40uy2ux2=2×40gu2(sin2αcos2α)=80gu2cos2α=80gcos2α=80gu2=800502=0.322α=108.7°α=54.3°
Commented by Tinkutara last updated on 12/Jun/17
Thanks Sir!
ThanksSir!

Leave a Reply

Your email address will not be published. Required fields are marked *