Menu Close

A-quadratic-equation-p-x-0-having-coefficient-of-x-2-unity-is-such-that-p-x-0-and-p-p-p-x-0-have-a-common-root-then-prove-that-p-0-p-1-0-




Question Number 31804 by rahul 19 last updated on 15/Mar/18
A quadratic equation p(x)=0 having  coefficient of x^2  unity is such that  p(x)=0 and p(p(p(x)))=0 have a   common root then,  prove that :  p(0)×p(1)=0.
Aquadraticequationp(x)=0havingcoefficientofx2unityissuchthatp(x)=0andp(p(p(x)))=0haveacommonrootthen,provethat:p(0)×p(1)=0.
Answered by MJS last updated on 15/Mar/18
p(x)=x^2 +bx+c  p(0)×p(1)=0 ⇒ p(0)=0∨p(1)=0    case 1  p(0)=0 ⇒ c=0  p(x)=(x+b)x  p(p(x))=q(x)  p(p(p(x)))=p(q(x))=r(x)    q(x)=(p(x)+b)p(x) ⇒   ⇒ q(0)=0  r(x)=(q(x)+b)q(x) ⇒  ⇒ r(0)=0 ⇒  ⇒ 0= common root of p(x) and r(x)    case 2  p(1)=0  p(x)=(x−1)(x−c)  [with b=−c−1; p(x)=x^2 −(c+1)x+c]  q(x)=(p(x)−1)(p(x)−c)=  =p^2 (x)−(c+1)p(x)+c  r(x)=[p^2 (x)−(c+1)p(x)+c−1]×  ×[p^2 (x)−(c+1)p(x)]=  =[...]×[p(x)−(c+1)]×p(x) ⇒  ⇒ r(1)=0 ⇒  ⇒ 1= common root of p(x) and r(x)
p(x)=x2+bx+cp(0)×p(1)=0p(0)=0p(1)=0case1p(0)=0c=0p(x)=(x+b)xp(p(x))=q(x)p(p(p(x)))=p(q(x))=r(x)q(x)=(p(x)+b)p(x)q(0)=0r(x)=(q(x)+b)q(x)r(0)=00=commonrootofp(x)andr(x)case2p(1)=0p(x)=(x1)(xc)[withb=c1;p(x)=x2(c+1)x+c]q(x)=(p(x)1)(p(x)c)==p2(x)(c+1)p(x)+cr(x)=[p2(x)(c+1)p(x)+c1]××[p2(x)(c+1)p(x)]==[]×[p(x)(c+1)]×p(x)r(1)=01=commonrootofp(x)andr(x)

Leave a Reply

Your email address will not be published. Required fields are marked *