Menu Close

A-question-related-to-Q-15184-Find-the-maximum-of-f-x-ln-x-1-x-




Question Number 15234 by mrW1 last updated on 08/Jun/17
A question related to Q.15184  Find the maximum of f(x)=(ln x)^(1/x)
AquestionrelatedtoQ.15184Findthemaximumoff(x)=(lnx)1x
Commented by mrW1 last updated on 09/Jun/17
the domain of f(x)=(ln x)^(1/x)  is [1,+∞)  let t=(1/x), t∈(0,1]  y=(ln (1/t))^t =(−ln t)^t   ln y=tln (−ln t)  (1/y)×(dy/dt)=ln (−ln t)+t×(1/(−ln t))×((−1)/t)=ln (−ln t)+(1/(ln t))  (dy/dt)=(−ln t)^t [ln (−ln t)+(1/(ln t))]=0  ⇒ln (−ln t)+(1/(ln t))=0  ⇒t=0.1714907907 (through graph)  ⇒y_(max) =1.102147
thedomainoff(x)=(lnx)1xis[1,+)lett=1x,t(0,1]y=(ln1t)t=(lnt)tlny=tln(lnt)1y×dydt=ln(lnt)+t×1lnt×1t=ln(lnt)+1lntdydt=(lnt)t[ln(lnt)+1lnt]=0ln(lnt)+1lnt=0t=0.1714907907(throughgraph)ymax=1.102147
Commented by mrW1 last updated on 09/Jun/17

Leave a Reply

Your email address will not be published. Required fields are marked *