Menu Close

A-racing-car-travels-on-a-track-without-banking-ABCDEFA-ABC-is-a-circular-arc-of-radius-2R-CD-and-FA-are-straight-paths-of-length-R-and-DEF-is-a-circular-arc-of-radius-R-100-m-The-co-efficient-




Question Number 19140 by Tinkutara last updated on 05/Aug/17
A racing car travels on a track (without  banking) ABCDEFA. ABC is a circular  arc of radius 2R. CD and FA are  straight paths of length R and DEF is  a circular arc of radius R = 100 m. The  co-efficient of friction on the road is μ =  0.1. The maximum speed of the car is  50 ms^(−1) . Find the minimum time for  completing one round.
$$\mathrm{A}\:\mathrm{racing}\:\mathrm{car}\:\mathrm{travels}\:\mathrm{on}\:\mathrm{a}\:\mathrm{track}\:\left(\mathrm{without}\right. \\ $$$$\left.\mathrm{banking}\right)\:{ABCDEFA}.\:{ABC}\:\mathrm{is}\:\mathrm{a}\:\mathrm{circular} \\ $$$$\mathrm{arc}\:\mathrm{of}\:\mathrm{radius}\:\mathrm{2}{R}.\:{CD}\:\mathrm{and}\:{FA}\:\mathrm{are} \\ $$$$\mathrm{straight}\:\mathrm{paths}\:\mathrm{of}\:\mathrm{length}\:{R}\:\mathrm{and}\:{DEF}\:\mathrm{is} \\ $$$$\mathrm{a}\:\mathrm{circular}\:\mathrm{arc}\:\mathrm{of}\:\mathrm{radius}\:{R}\:=\:\mathrm{100}\:\mathrm{m}.\:\mathrm{The} \\ $$$$\mathrm{co}-\mathrm{efficient}\:\mathrm{of}\:\mathrm{friction}\:\mathrm{on}\:\mathrm{the}\:\mathrm{road}\:\mathrm{is}\:\mu\:= \\ $$$$\mathrm{0}.\mathrm{1}.\:\mathrm{The}\:\mathrm{maximum}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{the}\:\mathrm{car}\:\mathrm{is} \\ $$$$\mathrm{50}\:\mathrm{ms}^{−\mathrm{1}} .\:\mathrm{Find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{time}\:\mathrm{for} \\ $$$$\mathrm{completing}\:\mathrm{one}\:\mathrm{round}. \\ $$
Commented by Tinkutara last updated on 06/Aug/17
Don′t we neglect such processes in  physics?
$$\mathrm{Don}'\mathrm{t}\:\mathrm{we}\:\mathrm{neglect}\:\mathrm{such}\:\mathrm{processes}\:\mathrm{in} \\ $$$$\mathrm{physics}? \\ $$
Commented by Tinkutara last updated on 05/Aug/17
Commented by Tinkutara last updated on 06/Aug/17
I don′t know Sir. I am reading this from  a book and it has solution in it. Should  I post it?
$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{know}\:\mathrm{Sir}.\:\mathrm{I}\:\mathrm{am}\:\mathrm{reading}\:\mathrm{this}\:\mathrm{from} \\ $$$$\mathrm{a}\:\mathrm{book}\:\mathrm{and}\:\mathrm{it}\:\mathrm{has}\:\mathrm{solution}\:\mathrm{in}\:\mathrm{it}.\:\mathrm{Should} \\ $$$$\mathrm{I}\:\mathrm{post}\:\mathrm{it}? \\ $$
Commented by ajfour last updated on 06/Aug/17
has it to come to stop and can i  choose starting point on my own?
$$\mathrm{has}\:\mathrm{it}\:\mathrm{to}\:\mathrm{come}\:\mathrm{to}\:\mathrm{stop}\:\mathrm{and}\:\mathrm{can}\:\mathrm{i} \\ $$$$\mathrm{choose}\:\mathrm{starting}\:\mathrm{point}\:\mathrm{on}\:\mathrm{my}\:\mathrm{own}? \\ $$$$ \\ $$
Commented by ajfour last updated on 06/Aug/17
yes, post it.thanks.
$$\mathrm{yes},\:\mathrm{post}\:\mathrm{it}.\mathrm{thanks}. \\ $$
Commented by Tinkutara last updated on 06/Aug/17
Commented by Tinkutara last updated on 06/Aug/17
Commented by ajfour last updated on 06/Aug/17
this is even wrong, since no time  is included to change speed.
$$\mathrm{this}\:\mathrm{is}\:\mathrm{even}\:\mathrm{wrong},\:\mathrm{since}\:\mathrm{no}\:\mathrm{time} \\ $$$$\mathrm{is}\:\mathrm{included}\:\mathrm{to}\:\mathrm{change}\:\mathrm{speed}. \\ $$
Commented by ajfour last updated on 06/Aug/17
not after class X .
$$\mathrm{not}\:\mathrm{after}\:\mathrm{class}\:\mathrm{X}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *