Menu Close

a-rectangle-s-a-side-s-terminal-points-coordinate-are-2-1-6-5-and-the-length-of-the-diagonal-is-8-unit-what-are-coordinate-of-terminal-point-of-paralel-side-that-side-




Question Number 121422 by faysal last updated on 08/Nov/20
a rectangle′s a side′s terminal  points coordinate are (2,−1), (6,5) and the  length of the diagonal is 8 unit.  what are coordinate of terminal point  of paralel side that side
$${a}\:{rectangle}'{s}\:{a}\:{side}'{s}\:{terminal} \\ $$$${points}\:{coordinate}\:{are}\:\left(\mathrm{2},−\mathrm{1}\right),\:\left(\mathrm{6},\mathrm{5}\right)\:{and}\:{the} \\ $$$${length}\:{of}\:{the}\:{diagonal}\:{is}\:\mathrm{8}\:{unit}. \\ $$$${what}\:{are}\:{coordinate}\:{of}\:{terminal}\:{point} \\ $$$${of}\:{paralel}\:{side}\:{that}\:{side} \\ $$
Commented by mr W last updated on 08/Nov/20
length of diagonal is  (√((6−2)^2 +(5+1)^2 ))=2(√(13))≠8  with given conditions you can not  determine the other diagonal.
$${length}\:{of}\:{diagonal}\:{is} \\ $$$$\sqrt{\left(\mathrm{6}−\mathrm{2}\right)^{\mathrm{2}} +\left(\mathrm{5}+\mathrm{1}\right)^{\mathrm{2}} }=\mathrm{2}\sqrt{\mathrm{13}}\neq\mathrm{8} \\ $$$${with}\:{given}\:{conditions}\:{you}\:{can}\:{not} \\ $$$${determine}\:{the}\:{other}\:{diagonal}. \\ $$
Answered by $@y@m last updated on 08/Nov/20
The length of the line joining  (2,−1) and (6,5) is  (√{)(2−6)^2 +(−1−5)^2 }=(√(4^2 +6^2 ))=(√(52))  ≠8  Something wrong with question.  Please check.
$${The}\:{length}\:{of}\:{the}\:{line}\:{joining} \\ $$$$\left(\mathrm{2},−\mathrm{1}\right)\:{and}\:\left(\mathrm{6},\mathrm{5}\right)\:{is} \\ $$$$\left.\sqrt{\left\{\right.}\left(\mathrm{2}−\mathrm{6}\right)^{\mathrm{2}} +\left(−\mathrm{1}−\mathrm{5}\right)^{\mathrm{2}} \right\}=\sqrt{\mathrm{4}^{\mathrm{2}} +\mathrm{6}^{\mathrm{2}} }=\sqrt{\mathrm{52}} \\ $$$$\neq\mathrm{8} \\ $$$${Something}\:{wrong}\:{with}\:{question}. \\ $$$${Please}\:{check}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *