Menu Close

a-rectangle-s-a-side-s-terminal-points-coordinate-are-2-1-6-5-and-the-length-of-the-diagonal-is-8-unit-what-are-coordinate-of-terminal-point-of-paralel-side-that-side-




Question Number 121474 by faysal last updated on 08/Nov/20
a rectangle′s a side′s terminal  points coordinate are (2,−1), (6,5) and the  length of the diagonal is 8 unit.  what are coordinate of terminal point  of paralel side that side
$${a}\:{rectangle}'{s}\:{a}\:{side}'{s}\:{terminal} \\ $$$${points}\:{coordinate}\:{are}\:\left(\mathrm{2},−\mathrm{1}\right),\:\left(\mathrm{6},\mathrm{5}\right)\:{and}\:{the} \\ $$$${length}\:{of}\:{the}\:{diagonal}\:{is}\:\mathrm{8}\:{unit}. \\ $$$${what}\:{are}\:{coordinate}\:{of}\:{terminal}\:{point} \\ $$$${of}\:{paralel}\:{side}\:{that}\:{side} \\ $$
Answered by TANMAY PANACEA last updated on 08/Nov/20
one side eqn ((y+1)/(−1−5))=((x−2)/(2−6))→((y+1)/3)=((x−2)/2)  3x−2y−8=0  so ∥ side eqn 3x−2y=k  i think data insufficient
$${one}\:{side}\:{eqn}\:\frac{{y}+\mathrm{1}}{−\mathrm{1}−\mathrm{5}}=\frac{{x}−\mathrm{2}}{\mathrm{2}−\mathrm{6}}\rightarrow\frac{{y}+\mathrm{1}}{\mathrm{3}}=\frac{{x}−\mathrm{2}}{\mathrm{2}} \\ $$$$\mathrm{3}{x}−\mathrm{2}{y}−\mathrm{8}=\mathrm{0} \\ $$$${so}\:\parallel\:{side}\:{eqn}\:\mathrm{3}{x}−\mathrm{2}{y}={k} \\ $$$${i}\:{think}\:{data}\:{insufficient} \\ $$
Commented by harckinwunmy last updated on 08/Nov/20
following
$$\mathrm{following} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *