Menu Close

A-rectangular-box-open-at-the-top-is-to-have-a-volume-of-32-cube-feet-What-must-be-the-dimensions-so-that-the-total-surface-is-a-minimum-




Question Number 144532 by EDWIN88 last updated on 26/Jun/21
A rectangular box,open at the  top is to have a volume of 32 cube feet  What must be the dimensions  so that the total surface is a minimum?
Arectangularbox,openatthetopistohaveavolumeof32cubefeetWhatmustbethedimensionssothatthetotalsurfaceisaminimum?
Answered by liberty last updated on 26/Jun/21
volume of box = V=xyz = 32   and z = ((32)/(xy))  surface area of box =S=xy+2yz+2xz    { (((∂S/∂x)=y−((64)/x^2 )=0 when x^2 y=64)),(((∂S/∂y)=x−((64)/y^2 )=0 when xy^2 =64)) :}  so we get y=x and x^3 =64 or   x=y=4 and z=2  for x=y=4 ,Δ=S_(xx) S_(yy) −S_(xy) ^2   Δ = (((128)/x^3 ))(((128)/y^3 ))−1>0   and S_(xx) = ((128)/x^3 )>0 hence it follows  that the dimensions 4 feet × 4 feet ×2 feet  give the minimum surface
volumeofbox=V=xyz=32andz=32xysurfaceareaofbox=S=xy+2yz+2xz{Sx=y64x2=0whenx2y=64Sy=x64y2=0whenxy2=64sowegety=xandx3=64orx=y=4andz=2forx=y=4,Δ=SxxSyySxy2Δ=(128x3)(128y3)1>0andSxx=128x3>0henceitfollowsthatthedimensions4feet×4feet×2feetgivetheminimumsurface

Leave a Reply

Your email address will not be published. Required fields are marked *