A-rectangular-box-open-at-the-top-is-to-have-a-volume-of-32-cube-feet-What-must-be-the-dimensions-so-that-the-total-surface-is-a-minimum- Tinku Tara June 4, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 144532 by EDWIN88 last updated on 26/Jun/21 Arectangularbox,openatthetopistohaveavolumeof32cubefeetWhatmustbethedimensionssothatthetotalsurfaceisaminimum? Answered by liberty last updated on 26/Jun/21 volumeofbox=V=xyz=32andz=32xysurfaceareaofbox=S=xy+2yz+2xz{∂S∂x=y−64x2=0whenx2y=64∂S∂y=x−64y2=0whenxy2=64sowegety=xandx3=64orx=y=4andz=2forx=y=4,Δ=SxxSyy−Sxy2Δ=(128x3)(128y3)−1>0andSxx=128x3>0henceitfollowsthatthedimensions4feet×4feet×2feetgivetheminimumsurface Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Find-the-shortest-distance-from-the-origin-to-the-hyperbola-x-2-8xy-7y-2-225-z-0-Next Next post: The-value-of-0-pi-sin2xdx-2-0-pi-2-cos2xdx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.