Menu Close

A-rectangular-wire-frame-ABCD-is-in-vertical-plane-is-moving-with-a-constant-acceleration-a-into-the-plane-Direction-of-gravity-is-shown-in-figure-A-collar-can-move-on-wire-AC-of-length-l-Coefficie




Question Number 23489 by Tinkutara last updated on 31/Oct/17
A rectangular wire frame ABCD is in  vertical plane is moving with a constant  acceleration a into the plane. Direction  of gravity is shown in figure. A collar  can move on wire AC of length l.  Coefficient of friction between wire  and collar is μ. Find  (i) The minimum acceleration a so that  collar does not slip on wire.  (ii) The time taken by collar to reach C  if acceleration is half the value  calculated in part (i)
ArectangularwireframeABCDisinverticalplaneismovingwithaconstantaccelerationaintotheplane.Directionofgravityisshowninfigure.AcollarcanmoveonwireACoflengthl.Coefficientoffrictionbetweenwireandcollarisμ.Find(i)Theminimumaccelerationasothatcollardoesnotsliponwire.(ii)ThetimetakenbycollartoreachCifaccelerationishalfthevaluecalculatedinpart(i)
Commented by Tinkutara last updated on 31/Oct/17
Commented by mrW1 last updated on 31/Oct/17
(i)  μm((√(a^2 +g^2 cos^2  θ)))≥mg sin θ  a^2 ≥(((sin^2  θ)/μ^2 )−cos^2  θ)g^2   a≥(g/μ)(√(sin^2  θ−μ^2 cos^2  θ))  (ii)  with a=(g/(2μ))(√(sin^2  θ−μ^2 cos^2  θ))  ma_s =mg sin θ−μmg((√(((sin^2  θ−μ^2 cos^2  θ)/(4μ^2 ))+cos^2  θ)))  a_s =(g/2)(2sin θ−(√(sin^2  θ+3μ^2 cos^2  θ)))  t=(√((2L)/a_s ))=2(√(L/((2sin θ−(√(sin^2  θ+3μ^2 cos^2  θ)))g)))
(i)μm(a2+g2cos2θ)mgsinθa2(sin2θμ2cos2θ)g2agμsin2θμ2cos2θ(ii)witha=g2μsin2θμ2cos2θmas=mgsinθμmg(sin2θμ2cos2θ4μ2+cos2θ)as=g2(2sinθsin2θ+3μ2cos2θ)t=2Las=2L(2sinθsin2θ+3μ2cos2θ)g
Answered by ajfour last updated on 31/Oct/17
Commented by ajfour last updated on 31/Oct/17
N_z =ma  N_x =mgcos θ   N=m(√(a^2 +g^2 cos^2 θ))  (i)      f−mgsin θ=0      ⇒ μN ≥ mgsin θ  or   a^2 +g^2 cos^2 θ=((g^2 sin^2 θ)/μ^2 )       a ≥ (g/μ)(√(sin^2 θ−μ^2 cos^2 θ))   (ii)  l=(1/2)A_y t^2        mgsin θ−μN=mA_y      N=m(√(a^2 /4+g^2 cos^2 θ))   A_y =gsin θ−μ(√((g^2 /(4μ^2 ))(sin^2 θ−μ^2 cos^2 θ)+g^2 cos^2 θ))  t=(√((2l)/A_y ))   =(√((2l)/(gsin θ−(g/2)(√(sin^2 θ+3μ^2 cos^2 θ))))) .
Nz=maNx=mgcosθN=ma2+g2cos2θ(i)fmgsinθ=0μNmgsinθora2+g2cos2θ=g2sin2θμ2agμsin2θμ2cos2θ(ii)l=12Ayt2mgsinθμN=mAyN=ma2/4+g2cos2θAy=gsinθμg24μ2(sin2θμ2cos2θ)+g2cos2θt=2lAy=2lgsinθg2sin2θ+3μ2cos2θ.
Commented by Tinkutara last updated on 01/Nov/17
I got that μN≥mgsinθ. But only doubt  is that N is of the form i^∧ +k^∧ . Then  why it should be equated with mgsinθy^∧ ?  Also, how you write 3^(rd)  line of (ii) part?
IgotthatμNmgsinθ.ButonlydoubtisthatNisoftheformi+k.Thenwhyitshouldbeequatedwithmgsinθy?Also,howyouwrite3rdlineof(ii)part?

Leave a Reply

Your email address will not be published. Required fields are marked *