Menu Close

A-rocket-is-moving-in-a-gravity-free-space-with-a-constant-acceleration-of-2-m-s-2-along-x-direction-see-figure-The-length-of-a-chamber-inside-the-rocket-is-4-m-A-ball-is-thrown-from-the-left-e




Question Number 17835 by Tinkutara last updated on 11/Jul/17
A rocket is moving in a gravity free  space with a constant acceleration of  2 m/s^2  along + x direction (see figure).  The length of a chamber inside the  rocket is 4 m. A ball is thrown from the  left end of the chamber in +x direction  with a speed of 0.3 m/s relative to the  rocket. At the same time, another ball  is thrown in −x direction with a speed  of 0.2 m/s from its right end relative to  the rocket. The time in seconds when  the two balls hit each other is
$$\mathrm{A}\:\mathrm{rocket}\:\mathrm{is}\:\mathrm{moving}\:\mathrm{in}\:\mathrm{a}\:\mathrm{gravity}\:\mathrm{free} \\ $$$$\mathrm{space}\:\mathrm{with}\:\mathrm{a}\:\mathrm{constant}\:\mathrm{acceleration}\:\mathrm{of} \\ $$$$\mathrm{2}\:\mathrm{m}/\mathrm{s}^{\mathrm{2}} \:\mathrm{along}\:+\:\mathrm{x}\:\mathrm{direction}\:\left(\mathrm{see}\:\mathrm{figure}\right). \\ $$$$\mathrm{The}\:\mathrm{length}\:\mathrm{of}\:\mathrm{a}\:\mathrm{chamber}\:\mathrm{inside}\:\mathrm{the} \\ $$$$\mathrm{rocket}\:\mathrm{is}\:\mathrm{4}\:\mathrm{m}.\:\mathrm{A}\:\mathrm{ball}\:\mathrm{is}\:\mathrm{thrown}\:\mathrm{from}\:\mathrm{the} \\ $$$$\mathrm{left}\:\mathrm{end}\:\mathrm{of}\:\mathrm{the}\:\mathrm{chamber}\:\mathrm{in}\:+{x}\:\mathrm{direction} \\ $$$$\mathrm{with}\:\mathrm{a}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{0}.\mathrm{3}\:\mathrm{m}/\mathrm{s}\:\mathrm{relative}\:\mathrm{to}\:\mathrm{the} \\ $$$$\mathrm{rocket}.\:\mathrm{At}\:\mathrm{the}\:\mathrm{same}\:\mathrm{time},\:\mathrm{another}\:\mathrm{ball} \\ $$$$\mathrm{is}\:\mathrm{thrown}\:\mathrm{in}\:−{x}\:\mathrm{direction}\:\mathrm{with}\:\mathrm{a}\:\mathrm{speed} \\ $$$$\mathrm{of}\:\mathrm{0}.\mathrm{2}\:\mathrm{m}/\mathrm{s}\:\mathrm{from}\:\mathrm{its}\:\mathrm{right}\:\mathrm{end}\:\mathrm{relative}\:\mathrm{to} \\ $$$$\mathrm{the}\:\mathrm{rocket}.\:\mathrm{The}\:\mathrm{time}\:\mathrm{in}\:\mathrm{seconds}\:\mathrm{when} \\ $$$$\mathrm{the}\:\mathrm{two}\:\mathrm{balls}\:\mathrm{hit}\:\mathrm{each}\:\mathrm{other}\:\mathrm{is} \\ $$
Commented by Tinkutara last updated on 11/Jul/17
Answered by ajfour last updated on 11/Jul/17
let rocket′s initial speed=u   (u+0.3)t=4+(u−0.2)t  ⇒    t=(4/(0.5)) =8 s .
$$\mathrm{let}\:\mathrm{rocket}'\mathrm{s}\:\mathrm{initial}\:\mathrm{speed}=\mathrm{u} \\ $$$$\:\left(\mathrm{u}+\mathrm{0}.\mathrm{3}\right)\mathrm{t}=\mathrm{4}+\left(\mathrm{u}−\mathrm{0}.\mathrm{2}\right)\mathrm{t} \\ $$$$\Rightarrow\:\:\:\:\mathrm{t}=\frac{\mathrm{4}}{\mathrm{0}.\mathrm{5}}\:=\mathrm{8}\:\mathrm{s}\:. \\ $$$$ \\ $$
Answered by mrW1 last updated on 11/Jul/17
v=velocity of rocket as the balls are thrownn  v_1 =v+0.3  v_2 =v−0.2  (v+0.3)t=4+(v−0.2)t  ⇒0.5t=4  ⇒t=(4/(0.5))=8 s
$$\mathrm{v}=\mathrm{velocity}\:\mathrm{of}\:\mathrm{rocket}\:\mathrm{as}\:\mathrm{the}\:\mathrm{balls}\:\mathrm{are}\:\mathrm{thrownn} \\ $$$$\mathrm{v}_{\mathrm{1}} =\mathrm{v}+\mathrm{0}.\mathrm{3} \\ $$$$\mathrm{v}_{\mathrm{2}} =\mathrm{v}−\mathrm{0}.\mathrm{2} \\ $$$$\left(\mathrm{v}+\mathrm{0}.\mathrm{3}\right)\mathrm{t}=\mathrm{4}+\left(\mathrm{v}−\mathrm{0}.\mathrm{2}\right)\mathrm{t} \\ $$$$\Rightarrow\mathrm{0}.\mathrm{5t}=\mathrm{4} \\ $$$$\Rightarrow\mathrm{t}=\frac{\mathrm{4}}{\mathrm{0}.\mathrm{5}}=\mathrm{8}\:\mathrm{s} \\ $$
Commented by ajfour last updated on 11/Jul/17
Rocket acquires a velocity of 0.3m/s  in a time t_0 =0.3/2=0.15s  after this time rocket moves faster  than ball 1 and ball 1 hits the point  from where it was thrown in a time  equal to 2t_0 =0.3s ; the second ball  is still on its way and reaches the  left chamber wall of rocket in a time  given by:        (0.2)t+(1/2)(2)t^2 =4  or  t^2 +(t/5)−4=0   or   5t^2 +t−20=0  ⇒    t=((−1+(√(1+400)))/(10)) ≈ 1.9 s .
$$\mathrm{Rocket}\:\mathrm{acquires}\:\mathrm{a}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{0}.\mathrm{3m}/\mathrm{s} \\ $$$$\mathrm{in}\:\mathrm{a}\:\mathrm{time}\:\mathrm{t}_{\mathrm{0}} =\mathrm{0}.\mathrm{3}/\mathrm{2}=\mathrm{0}.\mathrm{15s} \\ $$$$\mathrm{after}\:\mathrm{this}\:\mathrm{time}\:\mathrm{rocket}\:\mathrm{moves}\:\mathrm{faster} \\ $$$$\mathrm{than}\:\mathrm{ball}\:\mathrm{1}\:\mathrm{and}\:\mathrm{ball}\:\mathrm{1}\:\mathrm{hits}\:\mathrm{the}\:\mathrm{point} \\ $$$$\mathrm{from}\:\mathrm{where}\:\mathrm{it}\:\mathrm{was}\:\mathrm{thrown}\:\mathrm{in}\:\mathrm{a}\:\mathrm{time} \\ $$$$\mathrm{equal}\:\mathrm{to}\:\mathrm{2t}_{\mathrm{0}} =\mathrm{0}.\mathrm{3s}\:;\:\mathrm{the}\:\mathrm{second}\:\mathrm{ball} \\ $$$$\mathrm{is}\:\mathrm{still}\:\mathrm{on}\:\mathrm{its}\:\mathrm{way}\:\mathrm{and}\:\mathrm{reaches}\:\mathrm{the} \\ $$$$\mathrm{left}\:\mathrm{chamber}\:\mathrm{wall}\:\mathrm{of}\:\mathrm{rocket}\:\mathrm{in}\:\mathrm{a}\:\mathrm{time} \\ $$$$\mathrm{given}\:\mathrm{by}: \\ $$$$\:\:\:\:\:\:\left(\mathrm{0}.\mathrm{2}\right)\mathrm{t}+\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{2}\right)\mathrm{t}^{\mathrm{2}} =\mathrm{4} \\ $$$$\mathrm{or}\:\:\mathrm{t}^{\mathrm{2}} +\frac{\mathrm{t}}{\mathrm{5}}−\mathrm{4}=\mathrm{0}\:\:\:\mathrm{or}\:\:\:\mathrm{5t}^{\mathrm{2}} +\mathrm{t}−\mathrm{20}=\mathrm{0} \\ $$$$\Rightarrow\:\:\:\:\mathrm{t}=\frac{−\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{400}}}{\mathrm{10}}\:\approx\:\mathrm{1}.\mathrm{9}\:\mathrm{s}\:. \\ $$$$\: \\ $$
Commented by Tinkutara last updated on 11/Jul/17
Thanks Sir!
$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *