Menu Close

A-series-of-natural-numbers-are-grouped-as-1-2-3-4-5-6-such-that-the-rth-group-contains-r-terms-Show-that-the-sum-of-the-numbers-in-the-2r-1-th-group-is-r




Question Number 148677 by nadovic last updated on 30/Jul/21
  A series of natural numbers are     grouped as 1+(2+3)+(4+5+6)+...    such that the rth group contains r     terms. Show that the sum of the    numbers in the (2r−1)th group is                          r^4 −(r−1)^4 .
Aseriesofnaturalnumbersaregroupedas1+(2+3)+(4+5+6)+suchthattherthgroupcontainsrterms.Showthatthesumofthenumbersinthe(2r1)thgroupisr4(r1)4.
Answered by gsk2684 last updated on 30/Jul/21
t_1 =1  t_2 =((1)+1)+((1)+2)  t_3 =((1+2)+1)+((1+2)+2)+((1+2)+3)  ....  t_(2r−1) =  ((1+2+3+..+(2r−2)+1)+  ((1+2+3+..+(2r−2)+2)+  ((1+2+3+..+(2r−2)+3)+...  ((1+2+3+..+(2r−2)+2r−1)  =(2r−1)(1+2+3+..+(2r−2))+(1+2+3+..+(2r−1))  =(2r−1)(((2r−2)(2r−1))/2)+(((2r−1)(2r))/2)  =(r−1)(2r−1)^2 +(2r−1)r  =(2r−1){2r^2 −3r+1+r}  =(2r−1)(2r^2 −2r+1)    r^4 −(r−1)^4   =(r^2 −(r−1)^2 )(r^2 +(r−1)^2 )  =(2r−1)(2r^2 −2r+1)
t1=1t2=((1)+1)+((1)+2)t3=((1+2)+1)+((1+2)+2)+((1+2)+3).t2r1=((1+2+3+..+(2r2)+1)+((1+2+3+..+(2r2)+2)+((1+2+3+..+(2r2)+3)+((1+2+3+..+(2r2)+2r1)=(2r1)(1+2+3+..+(2r2))+(1+2+3+..+(2r1))=(2r1)(2r2)(2r1)2+(2r1)(2r)2=(r1)(2r1)2+(2r1)r=(2r1){2r23r+1+r}=(2r1)(2r22r+1)r4(r1)4=(r2(r1)2)(r2+(r1)2)=(2r1)(2r22r+1)
Commented by nadovic last updated on 30/Jul/21
Thank Sir
ThankSir

Leave a Reply

Your email address will not be published. Required fields are marked *