Menu Close

a-Show-that-f-x-x-is-derivable-at-all-points-x-0-gt-0-and-that-f-x-0-1-2x-0-b-Show-that-the-function-f-x-x-continuous-at-x-0-0-is-not-derivable-at-x-0-0-




Question Number 95638 by Ar Brandon last updated on 26/May/20
a\Show that f(x)=(√x) is derivable at all points x_0 >0  and that f′(x_0 )=(1/(2x_0 ))  b\ Show that the function f(x)=(√x) (continuous at x_0 =0)  is not derivable at x_0 =0
$$\mathrm{a}\backslash\mathrm{Show}\:\mathrm{that}\:\mathrm{f}\left(\mathrm{x}\right)=\sqrt{\mathrm{x}}\:\mathrm{is}\:\mathrm{derivable}\:\mathrm{at}\:\mathrm{all}\:\mathrm{points}\:\mathrm{x}_{\mathrm{0}} >\mathrm{0} \\ $$$$\mathrm{and}\:\mathrm{that}\:\mathrm{f}'\left(\mathrm{x}_{\mathrm{0}} \right)=\frac{\mathrm{1}}{\mathrm{2x}_{\mathrm{0}} } \\ $$$$\mathrm{b}\backslash\:\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{function}\:\mathrm{f}\left(\mathrm{x}\right)=\sqrt{\mathrm{x}}\:\left(\mathrm{continuous}\:\mathrm{at}\:\mathrm{x}_{\mathrm{0}} =\mathrm{0}\right) \\ $$$$\mathrm{is}\:\mathrm{not}\:\mathrm{derivable}\:\mathrm{at}\:\mathrm{x}_{\mathrm{0}} =\mathrm{0} \\ $$
Answered by john santu last updated on 26/May/20
(b)f(x) =(√(x )) continuous at x_0 =0  (i) lim_(x→0^− )  (√x) = lim_(x→0^+ )  (√x) = 0  (ii) f(0) = (√0) = 0  since lim_(x→0)  (√x) = f(0) , hence f(x)=(√x)  continuous at x_0 =0
$$\left(\mathrm{b}\right)\mathrm{f}\left(\mathrm{x}\right)\:=\sqrt{\mathrm{x}\:}\:\mathrm{continuous}\:\mathrm{at}\:\mathrm{x}_{\mathrm{0}} =\mathrm{0} \\ $$$$\left(\mathrm{i}\right)\:\underset{{x}\rightarrow\mathrm{0}^{−} } {\mathrm{lim}}\:\sqrt{\mathrm{x}}\:=\:\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\sqrt{\mathrm{x}}\:=\:\mathrm{0} \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{f}\left(\mathrm{0}\right)\:=\:\sqrt{\mathrm{0}}\:=\:\mathrm{0} \\ $$$$\mathrm{since}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\sqrt{\mathrm{x}}\:=\:\mathrm{f}\left(\mathrm{0}\right)\:,\:\mathrm{hence}\:\mathrm{f}\left(\mathrm{x}\right)=\sqrt{\mathrm{x}} \\ $$$$\mathrm{continuous}\:\mathrm{at}\:\mathrm{x}_{\mathrm{0}} =\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *