Menu Close

a-sin-3-4x-cos-8-4x-dx-b-pi-2-pi-2-x-2-e-cosx-2x-sinxdx-




Question Number 108921 by Ar Brandon last updated on 20/Aug/20
a.  ∫((sin^3 4x)/(cos^8 4x))dx  b.  ∫_(−(π/2)) ^(π/2) (x^2 e^(cosx) −2x)sinxdx
a.sin34xcos84xdxb.π2π2(x2ecosx2x)sinxdx
Answered by bobhans last updated on 20/Aug/20
   ((≊βoβ≅)/(∦∦∦∦))  (a) ∫ (((1−cos^2 4x).sin 4x)/(cos^8 4x)) dx =−(1/4)∫ (((1−h^2 ) dh)/h^8 )   =−(1/4){ ∫h^(−8) dh −∫ h^(−6)  dh }  =−(1/4){−(1/(7h^7 ))+(1/(5h^5 ))} + c  =(1/(28 cos^7 4x))−(1/(20 cos^5 4x)) + c
βoβ∦∦∦∦(a)(1cos24x).sin4xcos84xdx=14(1h2)dhh8=14{h8dhh6dh}=14{17h7+15h5}+c=128cos74x120cos54x+c
Commented by Ar Brandon last updated on 20/Aug/20
thanks
Answered by Ar Brandon last updated on 20/Aug/20
b.  I=∫_(−(π/2)) ^(π/2) (x^2 e^(cosx) −2x)sinxdx , u=−x         I=∫_(−(π/2)) ^(π/2) (x^2 e^(cosx) +2x)sin(−x)dx  2I=∫_(−(π/2)) ^(π/2) (x^2 e^(cosx) −2x−x^2 e^(cosx) −2x)sinxdx       =−∫_(−(π/2)) ^(π/2) 4xsinxdx     I=−∫_(−(π/2)) ^(π/2) 2xsinxdx
b.I=π2π2(x2ecosx2x)sinxdx,u=xI=π2π2(x2ecosx+2x)sin(x)dx2I=π2π2(x2ecosx2xx2ecosx2x)sinxdx=π2π24xsinxdxI=π2π22xsinxdx
Answered by Dwaipayan Shikari last updated on 20/Aug/20
∫_(−(π/2)) ^(π/2) (x^2 e^(cosx) −2x)sinxdx=∫_(−(π/2)) ^(π/2) −(x^2 e^(cosx) −2x)sinxdx=I  2I=∫_(−(π/2)) ^(π/2) −4xsinxdx  −(I/4)=∫_0 ^(π/2) xsinxdx  −(I/4)=−[xcosx]_0 ^(π/2) +[sinx]_0 ^(π/2)   I=−4
π2π2(x2ecosx2x)sinxdx=π2π2(x2ecosx2x)sinxdx=I2I=π2π24xsinxdxI4=0π2xsinxdxI4=[xcosx]0π2+[sinx]0π2I=4
Commented by Ar Brandon last updated on 20/Aug/20
Cool !
Commented by Ar Brandon last updated on 20/Aug/20
Hey bro, what do you think of Q108491 ? ��

Leave a Reply

Your email address will not be published. Required fields are marked *