Menu Close

A-small-ball-is-dropped-from-a-height-of-1m-into-a-horizontal-floor-Each-time-it-rebounces-to-3-5-of-the-height-it-has-fallen-a-show-that-when-the-ball-strikes-the-ground-for-the-third-time-it-has-




Question Number 32312 by NECx last updated on 23/Mar/18
A small ball is dropped from a   height of 1m into a horizontal  floor.Each time it rebounces to  3/5 of the height it has fallen.  a)show that when the ball strikes  the ground for the third time ,it  has travelled a distance of 2.92m  b)Show that the total distance  travelled by the ball cant exceed  4m.
$${A}\:{small}\:{ball}\:{is}\:{dropped}\:{from}\:{a}\: \\ $$$${height}\:{of}\:\mathrm{1}{m}\:{into}\:{a}\:{horizontal} \\ $$$${floor}.{Each}\:{time}\:{it}\:{rebounces}\:{to} \\ $$$$\mathrm{3}/\mathrm{5}\:{of}\:{the}\:{height}\:{it}\:{has}\:{fallen}. \\ $$$$\left.{a}\right){show}\:{that}\:{when}\:{the}\:{ball}\:{strikes} \\ $$$${the}\:{ground}\:{for}\:{the}\:{third}\:{time}\:,{it} \\ $$$${has}\:{travelled}\:{a}\:{distance}\:{of}\:\mathrm{2}.\mathrm{92}{m} \\ $$$$\left.{b}\right){Show}\:{that}\:{the}\:{total}\:{distance} \\ $$$${travelled}\:{by}\:{the}\:{ball}\:{cant}\:{exceed} \\ $$$$\mathrm{4}{m}. \\ $$
Commented by NECx last updated on 23/Mar/18
please help with this
$${please}\:{help}\:{with}\:{this} \\ $$
Answered by mrW2 last updated on 23/Mar/18
1st strike: l_1 =1  2nd strike: l_2 =1+(3/5)×2  3rd strike: l_3 =1+(3/5)×2+((3/5))^2 ×2=2.92m  ....  n−th strike: l_n =1+(3/5)×2+((3/5))^2 ×2+...+((3/5))^(n−1) ×2  l_n =2[1+(3/5)+((3/5))^2 +...+((3/5))^(n−1) ]−1  lim_(n→∞)  l_n =(2/(1−(3/5)))−1=4 m  ⇒l_n <4 m
$$\mathrm{1}{st}\:{strike}:\:{l}_{\mathrm{1}} =\mathrm{1} \\ $$$$\mathrm{2}{nd}\:{strike}:\:{l}_{\mathrm{2}} =\mathrm{1}+\frac{\mathrm{3}}{\mathrm{5}}×\mathrm{2} \\ $$$$\mathrm{3}{rd}\:{strike}:\:{l}_{\mathrm{3}} =\mathrm{1}+\frac{\mathrm{3}}{\mathrm{5}}×\mathrm{2}+\left(\frac{\mathrm{3}}{\mathrm{5}}\right)^{\mathrm{2}} ×\mathrm{2}=\mathrm{2}.\mathrm{92}{m} \\ $$$$…. \\ $$$${n}−{th}\:{strike}:\:{l}_{{n}} =\mathrm{1}+\frac{\mathrm{3}}{\mathrm{5}}×\mathrm{2}+\left(\frac{\mathrm{3}}{\mathrm{5}}\right)^{\mathrm{2}} ×\mathrm{2}+…+\left(\frac{\mathrm{3}}{\mathrm{5}}\right)^{{n}−\mathrm{1}} ×\mathrm{2} \\ $$$${l}_{{n}} =\mathrm{2}\left[\mathrm{1}+\frac{\mathrm{3}}{\mathrm{5}}+\left(\frac{\mathrm{3}}{\mathrm{5}}\right)^{\mathrm{2}} +…+\left(\frac{\mathrm{3}}{\mathrm{5}}\right)^{{n}−\mathrm{1}} \right]−\mathrm{1} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{l}_{{n}} =\frac{\mathrm{2}}{\mathrm{1}−\frac{\mathrm{3}}{\mathrm{5}}}−\mathrm{1}=\mathrm{4}\:{m} \\ $$$$\Rightarrow{l}_{{n}} <\mathrm{4}\:{m} \\ $$
Commented by NECx last updated on 25/Mar/18
wow..... Thanks
$${wow}…..\:{Thanks} \\ $$
Commented by NECx last updated on 25/Mar/18
If I may ask,what does the ×2  represents. Since the object reboundes  (3/5) of the actual height I thought  it would have been   l_2 =1+((3/5))×2    please explain.Thanks
$${If}\:{I}\:{may}\:{ask},{what}\:{does}\:{the}\:×\mathrm{2} \\ $$$${represents}.\:{Since}\:{the}\:{object}\:{reboundes} \\ $$$$\frac{\mathrm{3}}{\mathrm{5}}\:{of}\:{the}\:{actual}\:{height}\:{I}\:{thought} \\ $$$${it}\:{would}\:{have}\:{been}\: \\ $$$${l}_{\mathrm{2}} =\mathrm{1}+\left(\frac{\mathrm{3}}{\mathrm{5}}\right)×\mathrm{2} \\ $$$$ \\ $$$${please}\:{explain}.{Thanks} \\ $$
Commented by mrW2 last updated on 06/Apr/18
you are right sir. it is also that what  I wrote:  l_2 =1+((3/5))×2  l_3 =1+((3/5))×2+((3/5))^2 ×2  ......  l_n =1+((3/5))×2+((3/5))^2 ×2+...+((3/5))^(n−1) ×2
$${you}\:{are}\:{right}\:{sir}.\:{it}\:{is}\:{also}\:{that}\:{what} \\ $$$${I}\:{wrote}: \\ $$$${l}_{\mathrm{2}} =\mathrm{1}+\left(\frac{\mathrm{3}}{\mathrm{5}}\right)×\mathrm{2} \\ $$$${l}_{\mathrm{3}} =\mathrm{1}+\left(\frac{\mathrm{3}}{\mathrm{5}}\right)×\mathrm{2}+\left(\frac{\mathrm{3}}{\mathrm{5}}\right)^{\mathrm{2}} ×\mathrm{2} \\ $$$$…… \\ $$$${l}_{{n}} =\mathrm{1}+\left(\frac{\mathrm{3}}{\mathrm{5}}\right)×\mathrm{2}+\left(\frac{\mathrm{3}}{\mathrm{5}}\right)^{\mathrm{2}} ×\mathrm{2}+…+\left(\frac{\mathrm{3}}{\mathrm{5}}\right)^{{n}−\mathrm{1}} ×\mathrm{2} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *