Menu Close

A-small-particle-moving-with-a-uniform-acceleration-a-covers-distances-X-and-Y-in-the-first-two-equal-and-consecutive-intervals-of-time-t-Show-that-a-Y-X-t-2-




Question Number 26329 by tawa tawa last updated on 24/Dec/17
A small particle moving with a uniform acceleration a covers distances   X and Y in the first two equal and consecutive intervals of time t. Show that  a = ((Y − X)/t^2 )
$$\mathrm{A}\:\mathrm{small}\:\mathrm{particle}\:\mathrm{moving}\:\mathrm{with}\:\mathrm{a}\:\mathrm{uniform}\:\mathrm{acceleration}\:\mathrm{a}\:\mathrm{covers}\:\mathrm{distances}\: \\ $$$$\mathrm{X}\:\mathrm{and}\:\mathrm{Y}\:\mathrm{in}\:\mathrm{the}\:\mathrm{first}\:\mathrm{two}\:\mathrm{equal}\:\mathrm{and}\:\mathrm{consecutive}\:\mathrm{intervals}\:\mathrm{of}\:\mathrm{time}\:\mathrm{t}.\:\mathrm{Show}\:\mathrm{that} \\ $$$$\mathrm{a}\:=\:\frac{\mathrm{Y}\:−\:\mathrm{X}}{\mathrm{t}^{\mathrm{2}} } \\ $$
Answered by ajfour last updated on 24/Dec/17
X=ut+(1/2)at^2       ....(i)  X+Y=2ut+(1/2)a(2t)^2      (ii)  (ii)−2×(i) gives:  Y−X=at^2   ⇒   a=((Y−X)/t^2 ) .
$${X}={ut}+\frac{\mathrm{1}}{\mathrm{2}}{at}^{\mathrm{2}} \:\:\:\:\:\:….\left({i}\right) \\ $$$${X}+{Y}=\mathrm{2}{ut}+\frac{\mathrm{1}}{\mathrm{2}}{a}\left(\mathrm{2}{t}\right)^{\mathrm{2}} \:\:\:\:\:\left({ii}\right) \\ $$$$\left({ii}\right)−\mathrm{2}×\left({i}\right)\:{gives}: \\ $$$${Y}−{X}={at}^{\mathrm{2}} \:\:\Rightarrow\:\:\:{a}=\frac{{Y}−{X}}{{t}^{\mathrm{2}} }\:. \\ $$
Commented by tawa tawa last updated on 24/Dec/17
God bless you sir.
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *