Question Number 18924 by Tinkutara last updated on 01/Aug/17
$$\mathrm{A}\:\mathrm{spring}\:\mathrm{of}\:\mathrm{force}\:\mathrm{constant}\:{k}\:\mathrm{is}\:\mathrm{cut}\:\mathrm{into} \\ $$$$\mathrm{two}\:\mathrm{pieces}\:\mathrm{such}\:\mathrm{that}\:\mathrm{one}\:\mathrm{piece}\:\mathrm{is}\:\mathrm{twice} \\ $$$$\mathrm{as}\:\mathrm{long}\:\mathrm{as}\:\mathrm{the}\:\mathrm{other}.\:\mathrm{Then}\:\mathrm{the}\:\mathrm{longer} \\ $$$$\mathrm{piece}\:\mathrm{will}\:\mathrm{have}\:\mathrm{a}\:\mathrm{force}\:\mathrm{constant}\:\mathrm{of} \\ $$
Answered by ajfour last updated on 01/Aug/17
$$\mathrm{k}\propto\frac{\mathrm{1}}{{l}} \\ $$$$\mathrm{let}\:\mathrm{longer}\:\mathrm{piece}\:\mathrm{has}\:\mathrm{force}\:\mathrm{constant} \\ $$$$\:\:\mathrm{equal}\:\mathrm{to}\:\mathrm{k}_{\mathrm{1}} \\ $$$$\mathrm{Then}\:\mathrm{shorter}\:\mathrm{one}\:\mathrm{has}\:\mathrm{force}\:\mathrm{constant} \\ $$$$\mathrm{equal}\:\mathrm{to}\:\mathrm{2k}_{\mathrm{1}} . \\ $$$$\mathrm{their}\:\mathrm{series}\:\mathrm{combination}\:\mathrm{has} \\ $$$$\mathrm{force}\:\mathrm{constant}\:\mathrm{k}\:\left(\mathrm{given}\right) \\ $$$$\:\:\frac{\mathrm{1}}{\mathrm{k}}=\frac{\mathrm{1}}{\mathrm{k}_{\mathrm{1}} }+\frac{\mathrm{1}}{\mathrm{2k}_{\mathrm{1}} } \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{k}}=\frac{\mathrm{3}}{\mathrm{2k}_{\mathrm{1}} }\:\:\:\Rightarrow\:\:\mathrm{k}_{\mathrm{1}} =\frac{\mathrm{3k}}{\mathrm{2}}\:. \\ $$
Commented by Tinkutara last updated on 01/Aug/17
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{ajfour}\:\mathrm{Sir}! \\ $$