Question Number 121393 by faysal last updated on 07/Nov/20
$${a}\:{square}'{s}\:{one}\:{diagonal}'{s}\:{terminal}\:{points}\:{are} \\ $$$$\left(\mathrm{5},\mathrm{0}\right),\:\left(\mathrm{9},\mathrm{4}\right)\:{what}\:{are}\:{the}\:{coordinate}\:{of} \\ $$$${other}\:{diagonal}'{s}\:{terminal}\:{points} \\ $$
Answered by TANMAY PANACEA last updated on 07/Nov/20
$${Disgonal}\:{eqn}\:\:\frac{{y}−\mathrm{0}}{\mathrm{0}−\mathrm{4}}=\frac{{x}−\mathrm{5}}{\mathrm{5}−\mathrm{9}}\rightarrow{x}−{y}−\mathrm{5}=\mathrm{0} \\ $$$${mid}\:{point}\:{of}\left(\mathrm{5},\mathrm{0}\right)\:{and}\left(\mathrm{9},\mathrm{4}\right)=\left(\mathrm{7},\mathrm{2}\right) \\ $$$${another}\:{diagonal}\:{is}\:\bot\left({x}−{y}−\mathrm{5}=\mathrm{0}\right){is} \\ $$$${x}+{y}={k}\:{which}\:{passes}\:{through}\:\left(\mathrm{7},\mathrm{2}\right)\rightarrow\mathrm{7}+\mathrm{2}={k} \\ $$$${Eqn}\:{anothdr}\:{diagonal}\:\:{x}+{y}=\mathrm{9} \\ $$$${the}\:{side}\:{of}\:{square}\:{make}\:\mathrm{45}^{{o}} \:{with}\:{diagonal} \\ $$$${x}−{y}=\mathrm{5}\:{snd}\:{which}\:{passes}\:{through}\:\left(\mathrm{5},\mathrm{0}\right){is} \\ $$$${y}={m}\left({x}−\mathrm{5}\right)\:\rightarrow{slope}\:{of}\:{x}−{y}=\mathrm{5}\:{is}\:\mathrm{1} \\ $$$${tan}\mathrm{45}^{\mathrm{0}} =\frac{\mathrm{1}−{m}}{\mathrm{1}+{m}}\rightarrow{m}=\mathrm{0}\: \\ $$$${eqn}\:{of}\:{side}\:{is}\:{y}=\mathrm{0}\:\:\left({x}\:{axis}\right) \\ $$$${solve}\:{y}=\mathrm{0}\:\:{and}\:{x}+{y}=\mathrm{9} \\ $$$$\left(\mathrm{9},\mathrm{0}\right){is}\:{one}\:{terminal}\:{of}\:{another}\:{diagonal} \\ $$$${the}\:{side}\:{of}\:{square}\:{make}\:\mathrm{45}^{{o}} \:{with}\:{diagonal}\:{x}−{y}=\mathrm{5} \\ $$$${and}\:{passes}\:{through}\left(\mathrm{9},\mathrm{4}\right)\:{is}\:\left({y}−\mathrm{4}\right)={m}_{\mathrm{1}} \left({x}−\mathrm{9}\right) \\ $$$${tan}\mathrm{45}^{{o}} =\frac{\mathrm{1}−{m}_{\mathrm{1}} }{\mathrm{1}+{m}_{\mathrm{1}} }\rightarrow{m}_{\mathrm{1}} =\mathrm{0}\:\:{eqn}\:{of}\:{anothdr}\:{side}\:{y}=\mathrm{4} \\ $$$${solve}\:{y}=\mathrm{4}\:\:{and}\:{x}+{y}=\mathrm{9}\:\: \\ $$$$\boldsymbol{{another}}\:\boldsymbol{{terminal}}\left(\mathrm{5},\mathrm{4}\right) \\ $$$$\boldsymbol{{R}}{ewuired}\:{answer}\:{is}\:\left(\mathrm{9},\mathrm{0}\right)\:{and}\:\left(\mathrm{5},\mathrm{4}\right) \\ $$$$ \\ $$
Answered by mr W last updated on 07/Nov/20
$$\frac{\mathrm{5}+\mathrm{9}}{\mathrm{2}}=\mathrm{7} \\ $$$$\frac{\mathrm{0}+\mathrm{4}}{\mathrm{2}}=\mathrm{2} \\ $$$$\frac{\mathrm{4}−\mathrm{0}}{\mathrm{9}−\mathrm{5}}=\mathrm{1} \\ $$$$\sqrt{\left(\mathrm{9}−\mathrm{5}\right)^{\mathrm{2}} +\left(\mathrm{4}−\mathrm{0}\right)^{\mathrm{2}} }=\mathrm{4}\sqrt{\mathrm{2}} \\ $$$$\left(\mathrm{7},\mathrm{2}\right)\pm\frac{\mathrm{4}\sqrt{\mathrm{2}}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}},−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)=\left(\mathrm{7}\pm\mathrm{2},\mathrm{2}\mp\mathrm{2}\right) \\ $$$$=\left(\mathrm{9},\mathrm{0}\right)\:{and}\:\left(\mathrm{5},\mathrm{4}\right) \\ $$