Question Number 44988 by peter frank last updated on 07/Oct/18
$$\boldsymbol{\mathrm{A}}\:\mathrm{tangent}\:\mathrm{to}\:\mathrm{ellipse}\:\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{a}^{\mathrm{2}\:} }+\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{b}^{\mathrm{2}} }=\mathrm{1}\:\boldsymbol{\mathrm{at}}\:\boldsymbol{\mathrm{point}}\:\boldsymbol{\mathrm{p}}\:\boldsymbol{\mathrm{meets}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{minor}}\:\boldsymbol{\mathrm{axis}} \\ $$$$\boldsymbol{\mathrm{at}}\:\boldsymbol{\mathrm{L}}\:\boldsymbol{\mathrm{if}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{normal}}\:\boldsymbol{\mathrm{at}}\:\boldsymbol{\mathrm{p}}\:\boldsymbol{\mathrm{meets}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{major}}\:\boldsymbol{\mathrm{axis}}\:\boldsymbol{\mathrm{at}}\:\boldsymbol{\mathrm{m}}.\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{locus}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{midpoint}}\:\boldsymbol{\mathrm{LM}} \\ $$
Answered by MrW3 last updated on 07/Oct/18
$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\frac{\mathrm{2}{x}}{{a}^{\mathrm{2}} }+\frac{\mathrm{2}{y}}{{b}^{\mathrm{2}} }×\frac{{dy}}{{dx}}=\mathrm{1} \\ $$$$\frac{{dy}}{{dx}}=−\frac{{b}^{\mathrm{2}} {x}}{{a}^{\mathrm{2}} {y}} \\ $$$${Point}\:{P}\left({u},{v}\right) \\ $$$$\frac{{u}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{v}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1}\:\:\:\:\:…\left({i}\right) \\ $$$${eqn}.\:{of}\:{tangent}\:{PL}: \\ $$$$\frac{{y}−{v}}{{x}−{u}}=−\frac{{b}^{\mathrm{2}} {u}}{{a}^{\mathrm{2}} {v}} \\ $$$${Point}\:{L}\left(\mathrm{0},{y}_{\mathrm{1}} \right) \\ $$$$\frac{{y}_{\mathrm{1}} −{v}}{−{u}}=−\frac{{b}^{\mathrm{2}} {u}}{{a}^{\mathrm{2}} {v}} \\ $$$$\Rightarrow{y}_{\mathrm{1}} ={v}\left(\mathrm{1}+\frac{{b}^{\mathrm{2}} {u}^{\mathrm{2}} }{{a}^{\mathrm{2}} {v}^{\mathrm{2}} }\right) \\ $$$${eqn}.\:{of}\:{normal}\:{PM}: \\ $$$$\frac{{y}−{v}}{{x}−{u}}=\frac{{a}^{\mathrm{2}} {v}}{{b}^{\mathrm{2}} {u}} \\ $$$${Point}\:{M}\left({x}_{\mathrm{2}} ,\mathrm{0}\right) \\ $$$$\frac{−{v}}{{x}_{\mathrm{2}} −{u}}=\frac{{a}^{\mathrm{2}} {v}}{{b}^{\mathrm{2}} {u}} \\ $$$$\Rightarrow{x}_{\mathrm{2}} ={u}\left(\mathrm{1}−\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right) \\ $$$${Midpoint}\:{of}\:{LM}\:{is}\:\left({p},{q}\right)\:{with} \\ $$$${p}=\frac{{x}_{\mathrm{2}} }{\mathrm{2}}=\frac{{u}}{\mathrm{2}}\left(\mathrm{1}−\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right)=\frac{{u}\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)}{\mathrm{2}{a}^{\mathrm{2}} } \\ $$$${q}=\frac{{y}_{\mathrm{1}} }{\mathrm{2}}=\frac{{v}}{\mathrm{2}}\left(\mathrm{1}+\frac{{b}^{\mathrm{2}} {u}^{\mathrm{2}} }{{a}^{\mathrm{2}} {v}^{\mathrm{2}} }\right)=\frac{{v}}{\mathrm{2}}\left(\frac{{v}^{\mathrm{2}} }{{b}^{\mathrm{2}} }+\frac{{u}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right)\frac{{b}^{\mathrm{2}} }{{v}^{\mathrm{2}} }=\frac{{b}^{\mathrm{2}} }{\mathrm{2}{v}} \\ $$$$\Rightarrow{u}=\frac{\mathrm{2}{a}^{\mathrm{2}} {p}}{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} } \\ $$$$\Rightarrow{v}=\frac{{b}^{\mathrm{2}} }{\mathrm{2}{q}} \\ $$$${putting}\:{this}\:{into}\:\left({i}\right): \\ $$$$\frac{\mathrm{4}{a}^{\mathrm{4}} {p}^{\mathrm{2}} }{\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right){a}^{\mathrm{2}} }+\frac{{b}^{\mathrm{4}} }{\mathrm{4}{q}^{\mathrm{2}} {b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\Rightarrow\frac{\mathrm{4}{a}^{\mathrm{2}} {p}^{\mathrm{2}} }{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }+\frac{{b}^{\mathrm{2}} }{\mathrm{4}{q}^{\mathrm{2}} }=\mathrm{1} \\ $$$${or} \\ $$$$\Rightarrow\frac{\mathrm{4}{a}^{\mathrm{2}} {x}^{\mathrm{2}} }{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }+\frac{{b}^{\mathrm{2}} }{\mathrm{4}{y}^{\mathrm{2}} }=\mathrm{1} \\ $$
Commented by peter frank last updated on 07/Oct/18
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{once}\:\mathrm{gain}\:\mathrm{sir}.\mathrm{i}\:\mathrm{really}\:\mathrm{appreciate}\:\mathrm{your}\:\mathrm{effort} \\ $$
Commented by MrW3 last updated on 07/Oct/18
Commented by MrW3 last updated on 07/Oct/18