Menu Close

A-tangent-to-ellipse-x-2-a-2-y-2-b-2-1-at-point-p-meets-the-minor-axis-at-L-if-the-normal-at-p-meets-the-major-axis-at-m-find-the-locus-of-midpoint-LM-




Question Number 44988 by peter frank last updated on 07/Oct/18
A tangent to ellipse (x^2 /a^(2 ) )+(y^2 /b^2 )=1 at point p meets the minor axis  at L if the normal at p meets the major axis at m.find the locus of midpoint LM
Atangenttoellipsex2a2+y2b2=1atpointpmeetstheminoraxisatLifthenormalatpmeetsthemajoraxisatm.findthelocusofmidpointLM
Answered by MrW3 last updated on 07/Oct/18
(x^2 /a^2 )+(y^2 /b^2 )=1  ((2x)/a^2 )+((2y)/b^2 )×(dy/dx)=1  (dy/dx)=−((b^2 x)/(a^2 y))  Point P(u,v)  (u^2 /a^2 )+(v^2 /b^2 )=1     ...(i)  eqn. of tangent PL:  ((y−v)/(x−u))=−((b^2 u)/(a^2 v))  Point L(0,y_1 )  ((y_1 −v)/(−u))=−((b^2 u)/(a^2 v))  ⇒y_1 =v(1+((b^2 u^2 )/(a^2 v^2 )))  eqn. of normal PM:  ((y−v)/(x−u))=((a^2 v)/(b^2 u))  Point M(x_2 ,0)  ((−v)/(x_2 −u))=((a^2 v)/(b^2 u))  ⇒x_2 =u(1−(b^2 /a^2 ))  Midpoint of LM is (p,q) with  p=(x_2 /2)=(u/2)(1−(b^2 /a^2 ))=((u(a^2 −b^2 ))/(2a^2 ))  q=(y_1 /2)=(v/2)(1+((b^2 u^2 )/(a^2 v^2 )))=(v/2)((v^2 /b^2 )+(u^2 /a^2 ))(b^2 /v^2 )=(b^2 /(2v))  ⇒u=((2a^2 p)/(a^2 −b^2 ))  ⇒v=(b^2 /(2q))  putting this into (i):  ((4a^4 p^2 )/((a^2 −b^2 )a^2 ))+(b^4 /(4q^2 b^2 ))=1  ⇒((4a^2 p^2 )/(a^2 −b^2 ))+(b^2 /(4q^2 ))=1  or  ⇒((4a^2 x^2 )/(a^2 −b^2 ))+(b^2 /(4y^2 ))=1
x2a2+y2b2=12xa2+2yb2×dydx=1dydx=b2xa2yPointP(u,v)u2a2+v2b2=1(i)eqn.oftangentPL:yvxu=b2ua2vPointL(0,y1)y1vu=b2ua2vy1=v(1+b2u2a2v2)eqn.ofnormalPM:yvxu=a2vb2uPointM(x2,0)vx2u=a2vb2ux2=u(1b2a2)MidpointofLMis(p,q)withp=x22=u2(1b2a2)=u(a2b2)2a2q=y12=v2(1+b2u2a2v2)=v2(v2b2+u2a2)b2v2=b22vu=2a2pa2b2v=b22qputtingthisinto(i):4a4p2(a2b2)a2+b44q2b2=14a2p2a2b2+b24q2=1or4a2x2a2b2+b24y2=1
Commented by peter frank last updated on 07/Oct/18
thank you once gain sir.i really appreciate your effort
thankyouoncegainsir.ireallyappreciateyoureffortthankyouoncegainsir.ireallyappreciateyoureffort
Commented by MrW3 last updated on 07/Oct/18
Commented by MrW3 last updated on 07/Oct/18

Leave a Reply

Your email address will not be published. Required fields are marked *