Menu Close

A-train-which-travels-at-a-uniform-speed-due-to-mechanical-fault-after-traveling-for-an-hour-goes-at-3-5-th-of-the-original-speed-and-reaches-the-destination-2-hours-late-If-the-fault-occured-after-




Question Number 47302 by JDlix last updated on 08/Nov/18
A train which travels at a uniform speed due to mechanical   fault after traveling for an hour goes at 3/5 th of the original   speed and reaches the destination 2 hours late.If the fault  occured after traveling another 50 miles the train would have  reached 40 minutes earlier. What is the distance between the   two stations ?
$${A}\:{train}\:{which}\:{travels}\:{at}\:{a}\:{uniform}\:{speed}\:{due}\:{to}\:{mechanical}\: \\ $$$${fault}\:{after}\:{traveling}\:{for}\:{an}\:{hour}\:{goes}\:{at}\:\mathrm{3}/\mathrm{5}\:{th}\:{of}\:{the}\:{original}\: \\ $$$${speed}\:{and}\:{reaches}\:{the}\:{destination}\:\mathrm{2}\:{hours}\:{late}.{If}\:{the}\:{fault} \\ $$$${occured}\:{after}\:{traveling}\:{another}\:\mathrm{50}\:{miles}\:{the}\:{train}\:{would}\:{have} \\ $$$${reached}\:\mathrm{40}\:{minutes}\:{earlier}.\:{What}\:{is}\:{the}\:{distance}\:{between}\:{the}\: \\ $$$${two}\:{stations}\:? \\ $$
Answered by math1967 last updated on 08/Nov/18
let distance between two station ymiles  original speed of train=xmiles/hr  for 1hr train covers xmiles  remaining dist.=(y−x)miles  ∴ 1+((y−x)/((3x)/5))=(y/x)+2  ⇒((5y−5x)/(3x)) −(y/x)=2−1  ⇒((2y−5x)/(3x))=1⇒2y=8x⇒y=4x  from 2nd condition  ((50)/((3x)/5)) −((50)/x)=((40)/(60))⇒((250−150)/(3x))=(2/3)  ∴x=50 ∴y=4×50=200  dist. between two stn.=200milesAns.
$${let}\:{distance}\:{between}\:{two}\:{station}\:{ymiles} \\ $$$${original}\:{speed}\:{of}\:{train}={xmiles}/{hr} \\ $$$${for}\:\mathrm{1}{hr}\:{train}\:{covers}\:{xmiles} \\ $$$${remaining}\:{dist}.=\left({y}−{x}\right){miles} \\ $$$$\therefore\:\mathrm{1}+\frac{{y}−{x}}{\frac{\mathrm{3}{x}}{\mathrm{5}}}=\frac{{y}}{{x}}+\mathrm{2} \\ $$$$\Rightarrow\frac{\mathrm{5}{y}−\mathrm{5}{x}}{\mathrm{3}{x}}\:−\frac{{y}}{{x}}=\mathrm{2}−\mathrm{1} \\ $$$$\Rightarrow\frac{\mathrm{2}{y}−\mathrm{5}{x}}{\mathrm{3}{x}}=\mathrm{1}\Rightarrow\mathrm{2}{y}=\mathrm{8}{x}\Rightarrow{y}=\mathrm{4}{x} \\ $$$${from}\:\mathrm{2}{nd}\:{condition} \\ $$$$\frac{\mathrm{50}}{\frac{\mathrm{3}{x}}{\mathrm{5}}}\:−\frac{\mathrm{50}}{{x}}=\frac{\mathrm{40}}{\mathrm{60}}\Rightarrow\frac{\mathrm{250}−\mathrm{150}}{\mathrm{3}{x}}=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\therefore{x}=\mathrm{50}\:\therefore{y}=\mathrm{4}×\mathrm{50}=\mathrm{200} \\ $$$${dist}.\:{between}\:{two}\:{stn}.=\mathrm{200}{milesAns}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *