Menu Close

A-transformation-f-on-a-complex-plane-is-defined-by-z-1-i-z-3-4i-show-that-f-is-a-simultitude-with-radius-r-and-centre-to-be-determined-Determine-to-the-invariant-point-under-f-




Question Number 100583 by Rio Michael last updated on 27/Jun/20
 A transformation f on a complex plane  is defined by z′ = (1 +i)z −3 + 4i   show that f is a simultitude with radius r and centre  Ω to be determined.  Determine to the invariant point under f.
$$\:\mathrm{A}\:\mathrm{transformation}\:{f}\:\mathrm{on}\:\mathrm{a}\:\mathrm{complex}\:\mathrm{plane} \\ $$$$\mathrm{is}\:\mathrm{defined}\:\mathrm{by}\:{z}'\:=\:\left(\mathrm{1}\:+{i}\right){z}\:−\mathrm{3}\:+\:\mathrm{4}{i} \\ $$$$\:\mathrm{show}\:\mathrm{that}\:{f}\:\mathrm{is}\:\mathrm{a}\:\mathrm{simultitude}\:\mathrm{with}\:\mathrm{radius}\:{r}\:\mathrm{and}\:\mathrm{centre} \\ $$$$\Omega\:\mathrm{to}\:\mathrm{be}\:\mathrm{determined}. \\ $$$$\mathrm{Determine}\:\mathrm{to}\:\mathrm{the}\:\mathrm{invariant}\:\mathrm{point}\:\mathrm{under}\:{f}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *