Question Number 112318 by Aina Samuel Temidayo last updated on 07/Sep/20
$$\mathrm{A}\:\mathrm{triangle}\:\mathrm{ABC}\:\mathrm{has}\:\mathrm{the}\:\mathrm{following} \\ $$$$\mathrm{properties}\:\mathrm{BC}=\mathrm{1},\:\boldsymbol{\mathrm{AB}}=\boldsymbol{\mathrm{AC}}\:\mathrm{and}\:\mathrm{that} \\ $$$$\mathrm{the}\:\mathrm{angle}\:\mathrm{bisector}\:\mathrm{from}\:\mathrm{vertex}\:\mathrm{B}\:\mathrm{is} \\ $$$$\mathrm{also}\:\mathrm{a}\:\mathrm{median}.\:\mathrm{Find}\:\mathrm{all}\:\mathrm{possible} \\ $$$$\mathrm{triangle}\left(\mathrm{s}\right)\:\mathrm{with}\:\mathrm{its}/\mathrm{their} \\ $$$$\mathrm{side}−\mathrm{lengths}\:\mathrm{and}\:\mathrm{angles}. \\ $$
Commented by Aina Samuel Temidayo last updated on 07/Sep/20
$$\mathrm{Solution}\:\mathrm{please}? \\ $$
Commented by mr W last updated on 07/Sep/20
$${the}\:{only}\:{possibility}: \\ $$$${equilateral}\:{triangle} \\ $$$${AB}={BC}={CA}=\mathrm{1} \\ $$
Answered by mr W last updated on 07/Sep/20
Commented by mr W last updated on 07/Sep/20
$$\frac{{CD}}{{BC}}=\frac{\mathrm{sin}\:\beta}{\mathrm{sin}\:\angle{BDC}} \\ $$$$\frac{{DA}}{{BA}}=\frac{\mathrm{sin}\:\beta}{\mathrm{sin}\:\angle{BDA}}=\frac{\mathrm{sin}\:\beta}{\mathrm{sin}\:\angle{BDC}}=\frac{{CD}}{{BC}} \\ $$$${DA}={CD}\:{as}\:{given} \\ $$$$\Rightarrow{BC}={BA} \\ $$$$\Rightarrow{BC}={BA}={CA} \\ $$$$\Rightarrow\Delta{ABC}\:{is}\:{equilateral} \\ $$
Commented by Aina Samuel Temidayo last updated on 07/Sep/20
$$\mathrm{Thanks}. \\ $$$$ \\ $$
Commented by Aina Samuel Temidayo last updated on 07/Sep/20
Commented by Aina Samuel Temidayo last updated on 07/Sep/20
$$\mathrm{Can}\:\mathrm{you}\:\mathrm{also}\:\mathrm{help}\:\mathrm{with}\:\mathrm{this}\:\mathrm{please}? \\ $$
Commented by 1549442205PVT last updated on 08/Sep/20