Menu Close

A-triangle-ABC-has-the-following-properties-BC-1-AB-BC-and-that-the-angle-bisector-from-vertex-B-is-also-a-median-Find-all-possible-triangle-s-with-its-their-side-lengths-and-angles-




Question Number 112209 by Aina Samuel Temidayo last updated on 06/Sep/20
A triangle ABC has the following  properties BC=1, AB=BC and that  the angle bisector from vertex B is  also a median. Find all possible  triangle(s) with its/their  side−lengths and angles.
$$\mathrm{A}\:\mathrm{triangle}\:\mathrm{ABC}\:\mathrm{has}\:\mathrm{the}\:\mathrm{following} \\ $$$$\mathrm{properties}\:\mathrm{BC}=\mathrm{1},\:\mathrm{AB}=\mathrm{BC}\:\mathrm{and}\:\mathrm{that} \\ $$$$\mathrm{the}\:\mathrm{angle}\:\mathrm{bisector}\:\mathrm{from}\:\mathrm{vertex}\:\mathrm{B}\:\mathrm{is} \\ $$$$\mathrm{also}\:\mathrm{a}\:\mathrm{median}.\:\mathrm{Find}\:\mathrm{all}\:\mathrm{possible} \\ $$$$\mathrm{triangle}\left(\mathrm{s}\right)\:\mathrm{with}\:\mathrm{its}/\mathrm{their} \\ $$$$\mathrm{side}−\mathrm{lengths}\:\mathrm{and}\:\mathrm{angles}. \\ $$
Commented by Aina Samuel Temidayo last updated on 07/Sep/20
It should be  AB=AC and not  AB=BC please. Can you try solving  now?
$$\boldsymbol{\mathrm{It}}\:\boldsymbol{\mathrm{should}}\:\boldsymbol{\mathrm{be}}\:\:\boldsymbol{\mathrm{AB}}=\boldsymbol{\mathrm{AC}}\:\mathrm{and}\:\mathrm{not} \\ $$$$\mathrm{AB}=\mathrm{BC}\:\mathrm{please}.\:\mathrm{Can}\:\mathrm{you}\:\mathrm{try}\:\mathrm{solving} \\ $$$$\mathrm{now}? \\ $$
Commented by Aina Samuel Temidayo last updated on 07/Sep/20
Hello. I think that question is  incorrect.
$$\mathrm{Hello}.\:\mathrm{I}\:\mathrm{think}\:\mathrm{that}\:\mathrm{question}\:\mathrm{is} \\ $$$$\mathrm{incorrect}. \\ $$
Commented by 1549442205PVT last updated on 07/Sep/20
Triangle ABC is isosceles at B then  the bisector of the angle ABC^(�)  is  always its median,so this hypothesis  isn′t necessary.It is unnecessary
$$\mathrm{Triangle}\:\mathrm{ABC}\:\mathrm{is}\:\mathrm{isosceles}\:\mathrm{at}\:\mathrm{B}\:\mathrm{then} \\ $$$$\mathrm{the}\:\mathrm{bisector}\:\mathrm{of}\:\mathrm{the}\:\mathrm{angle}\:\widehat {\mathrm{ABC}}\:\mathrm{is} \\ $$$$\mathrm{always}\:\mathrm{its}\:\mathrm{median},\mathrm{so}\:\mathrm{this}\:\mathrm{hypothesis} \\ $$$$\mathrm{isn}'\mathrm{t}\:\mathrm{necessary}.\mathrm{It}\:\mathrm{is}\:\mathrm{unnecessary} \\ $$
Commented by Aina Samuel Temidayo last updated on 07/Sep/20
Your solution please?
$$\mathrm{Your}\:\mathrm{solution}\:\mathrm{please}? \\ $$
Commented by 1549442205PVT last updated on 07/Sep/20
This is always true for ∀B^(�) .The  property of two amgles having their  sum equal to 90°:If α+β=90° then  sinα=cosβ,cosα=sinα,tanα=cotβ  .On the other words,  sinα=cos(90°−α)....cosα=sin(90°−α)
$$\mathrm{This}\:\mathrm{is}\:\mathrm{always}\:\mathrm{true}\:\mathrm{for}\:\forall\widehat {\mathrm{B}}.\mathrm{The} \\ $$$$\mathrm{property}\:\mathrm{of}\:\mathrm{two}\:\mathrm{amgles}\:\mathrm{having}\:\mathrm{their} \\ $$$$\mathrm{sum}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{90}°:\mathrm{If}\:\alpha+\beta=\mathrm{90}°\:\mathrm{then} \\ $$$$\mathrm{sin}\alpha=\mathrm{cos}\beta,\mathrm{cos}\alpha=\mathrm{sin}\alpha,\mathrm{tan}\alpha=\mathrm{cot}\beta \\ $$$$.\mathrm{On}\:\mathrm{the}\:\mathrm{other}\:\mathrm{words}, \\ $$$$\mathrm{sin}\alpha=\mathrm{cos}\left(\mathrm{90}°−\alpha\right)….\mathrm{cos}\alpha=\mathrm{sin}\left(\mathrm{90}°−\alpha\right) \\ $$
Commented by 1549442205PVT last updated on 07/Sep/20
Ok
$$\mathrm{Ok} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *