Menu Close

A-triangle-has-area-15-and-circumradius-12-Find-the-product-of-its-heights-




Question Number 110782 by Aina Samuel Temidayo last updated on 30/Aug/20
A triangle has area 15 and  circumradius 12. Find the product of  its heights.
Atrianglehasarea15andcircumradius12.Findtheproductofitsheights.
Answered by som(math1967) last updated on 30/Aug/20
(1/2)bcsinA=15  bc×(a/(24))=30 [∵sinA=(a/(2R))]  abc=30×24  let heights are h_1 ,h_2 ,h_3   ∴(1/2)×h_1 ×a=(1/2)×bc×sinA  (1/2)×h_2 ×b=(1/2)×casinB  (1/2)×h_3 ×c=(1/2)×absinC  ∴h_1 ×h_2 ×h_3 =abcsinAsinBsinC  =abc×(a/(24))×(b/(24))×(c/(24))  =((a^2 b^2 c^2 )/(24×24×24))  =((30×30×24×24)/(24×24×24))  =((900)/(24))=((75)/2)
12bcsinA=15bc×a24=30[sinA=a2R]abc=30×24letheightsareh1,h2,h312×h1×a=12×bc×sinA12×h2×b=12×casinB12×h3×c=12×absinCh1×h2×h3=abcsinAsinBsinC=abc×a24×b24×c24=a2b2c224×24×24=30×30×24×2424×24×24=90024=752
Answered by mr W last updated on 30/Aug/20
R=((abc)/(4A)) ⇒abc=4AR    A=(1/2)ah_A   A=(1/2)bh_B   A=(1/2)ch_C   ⇒h_A h_B h_C =((8A^3 )/(abc))=((8A^3 )/(4AR))=((2A^2 )/R)=((2×15^2 )/(12))=((75)/2)
R=abc4Aabc=4ARA=12ahAA=12bhBA=12chChAhBhC=8A3abc=8A34AR=2A2R=2×15212=752
Commented by Aina Samuel Temidayo last updated on 30/Aug/20
Thanks.
Thanks.

Leave a Reply

Your email address will not be published. Required fields are marked *