Menu Close

A-triangle-with-perimeter-7-has-integer-side-lengths-What-is-the-maximum-possible-area-of-such-a-triangle-




Question Number 19330 by Tinkutara last updated on 09/Aug/17
A triangle with perimeter 7 has integer  side lengths. What is the maximum  possible area of such a triangle?
$$\mathrm{A}\:\mathrm{triangle}\:\mathrm{with}\:\mathrm{perimeter}\:\mathrm{7}\:\mathrm{has}\:\mathrm{integer} \\ $$$$\mathrm{side}\:\mathrm{lengths}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{maximum} \\ $$$$\mathrm{possible}\:\mathrm{area}\:\mathrm{of}\:\mathrm{such}\:\mathrm{a}\:\mathrm{triangle}? \\ $$
Answered by mrW1 last updated on 09/Aug/17
3/3/1⇒A=(√(3.5×0.5×0.5×2.5))=1.479  3/2/2⇒A=(√(3.5×0.5×1.5×1.5))=1.984=max
$$\mathrm{3}/\mathrm{3}/\mathrm{1}\Rightarrow\mathrm{A}=\sqrt{\mathrm{3}.\mathrm{5}×\mathrm{0}.\mathrm{5}×\mathrm{0}.\mathrm{5}×\mathrm{2}.\mathrm{5}}=\mathrm{1}.\mathrm{479} \\ $$$$\mathrm{3}/\mathrm{2}/\mathrm{2}\Rightarrow\mathrm{A}=\sqrt{\mathrm{3}.\mathrm{5}×\mathrm{0}.\mathrm{5}×\mathrm{1}.\mathrm{5}×\mathrm{1}.\mathrm{5}}=\mathrm{1}.\mathrm{984}=\mathrm{max} \\ $$
Commented by Tinkutara last updated on 10/Aug/17
How to take the sides if perimeter was  a large number?
$$\mathrm{How}\:\mathrm{to}\:\mathrm{take}\:\mathrm{the}\:\mathrm{sides}\:\mathrm{if}\:\mathrm{perimeter}\:\mathrm{was} \\ $$$$\mathrm{a}\:\mathrm{large}\:\mathrm{number}? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *