Menu Close

A-uniform-circular-disc-of-mass-1-5-kg-and-radius-0-5-m-is-initially-at-rest-on-a-horizontal-frictionless-surface-Three-forces-of-equal-magnitude-F-0-5-N-are-applied-simultaneously-along-the-three-




Question Number 24934 by Tinkutara last updated on 29/Nov/17
A uniform circular disc of mass 1.5 kg  and radius 0.5 m is initially at rest on a  horizontal frictionless surface. Three  forces of equal magnitude F = 0.5 N  are applied simultaneously along the  three sides of an equilateral triangle  xyz with its vertices on the perimeter  of the disc. One second after applying  the forces, the angular speed of the disc  in rad/s is :
$$\mathrm{A}\:\mathrm{uniform}\:\mathrm{circular}\:\mathrm{disc}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{1}.\mathrm{5}\:\mathrm{kg} \\ $$$$\mathrm{and}\:\mathrm{radius}\:\mathrm{0}.\mathrm{5}\:\mathrm{m}\:\mathrm{is}\:\mathrm{initially}\:\mathrm{at}\:\mathrm{rest}\:\mathrm{on}\:\mathrm{a} \\ $$$$\mathrm{horizontal}\:\mathrm{frictionless}\:\mathrm{surface}.\:\mathrm{Three} \\ $$$$\mathrm{forces}\:\mathrm{of}\:\mathrm{equal}\:\mathrm{magnitude}\:{F}\:=\:\mathrm{0}.\mathrm{5}\:\mathrm{N} \\ $$$$\mathrm{are}\:\mathrm{applied}\:\mathrm{simultaneously}\:\mathrm{along}\:\mathrm{the} \\ $$$$\mathrm{three}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{an}\:\mathrm{equilateral}\:\mathrm{triangle} \\ $$$${xyz}\:\mathrm{with}\:\mathrm{its}\:\mathrm{vertices}\:\mathrm{on}\:\mathrm{the}\:\mathrm{perimeter} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{disc}.\:\mathrm{One}\:\mathrm{second}\:\mathrm{after}\:\mathrm{applying} \\ $$$$\mathrm{the}\:\mathrm{forces},\:\mathrm{the}\:\mathrm{angular}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{the}\:\mathrm{disc} \\ $$$$\mathrm{in}\:\mathrm{rad}/\mathrm{s}\:\mathrm{is}\:: \\ $$
Commented by Tinkutara last updated on 29/Nov/17
Commented by ajfour last updated on 29/Nov/17
τ_(net) =3(r_⊥ F) = 3×(R/2)×F        =((3×0.5×0.5)/2) =(3/8)Nm  ω=α△t = ((τ_(net) /(MR^2 /2)))△t      =(3/8)×(2/(1.5×0.5×0.5))×1     = 2rad/s .
$$\tau_{{net}} =\mathrm{3}\left({r}_{\bot} {F}\right)\:=\:\mathrm{3}×\frac{{R}}{\mathrm{2}}×{F} \\ $$$$\:\:\:\:\:\:=\frac{\mathrm{3}×\mathrm{0}.\mathrm{5}×\mathrm{0}.\mathrm{5}}{\mathrm{2}}\:=\frac{\mathrm{3}}{\mathrm{8}}{Nm} \\ $$$$\omega=\alpha\bigtriangleup{t}\:=\:\left(\frac{\tau_{{net}} }{{MR}^{\mathrm{2}} /\mathrm{2}}\right)\bigtriangleup{t} \\ $$$$\:\:\:\:=\frac{\mathrm{3}}{\mathrm{8}}×\frac{\mathrm{2}}{\mathrm{1}.\mathrm{5}×\mathrm{0}.\mathrm{5}×\mathrm{0}.\mathrm{5}}×\mathrm{1} \\ $$$$\:\:\:=\:\mathrm{2}{rad}/{s}\:. \\ $$
Commented by Tinkutara last updated on 30/Nov/17
Thank you Sir!
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{Sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *