Menu Close

A-uniform-sphere-of-weight-W-rest-between-a-smooth-vertical-plane-and-a-smooth-plane-inclined-at-an-angle-with-the-vertical-plane-Find-the-reaction-at-the-contact-surfaces-




Question Number 165818 by MikeH last updated on 08/Feb/22
A uniform sphere of weight W  rest between a smooth  vertical  plane and a smooth plane inclined  at an angle θ with the vertical  plane. Find the reaction at the   contact surfaces.
$$\mathrm{A}\:\mathrm{uniform}\:\mathrm{sphere}\:\mathrm{of}\:\mathrm{weight}\:{W} \\ $$$$\mathrm{rest}\:\mathrm{between}\:\mathrm{a}\:\mathrm{smooth}\:\:\mathrm{vertical} \\ $$$$\mathrm{plane}\:\mathrm{and}\:\mathrm{a}\:\mathrm{smooth}\:\mathrm{plane}\:\mathrm{inclined} \\ $$$$\mathrm{at}\:\mathrm{an}\:\mathrm{angle}\:\theta\:\mathrm{with}\:\mathrm{the}\:\mathrm{vertical} \\ $$$$\mathrm{plane}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{reaction}\:\mathrm{at}\:\mathrm{the}\: \\ $$$$\mathrm{contact}\:\mathrm{surfaces}.\: \\ $$
Answered by ajfour last updated on 08/Feb/22
Commented by ajfour last updated on 08/Feb/22
Rcos θ=W  ⇒  R=(W/(cos θ))  N=Rsin θ=((W/(cos θ)))sin θ=Wtan θ
$${R}\mathrm{cos}\:\theta={W} \\ $$$$\Rightarrow\:\:{R}=\frac{{W}}{\mathrm{cos}\:\theta} \\ $$$${N}={R}\mathrm{sin}\:\theta=\left(\frac{{W}}{\mathrm{cos}\:\theta}\right)\mathrm{sin}\:\theta={W}\mathrm{tan}\:\theta \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *