Menu Close

A-variable-point-P-x-y-moves-on-the-curve-xy-6-and-R-is-the-point-which-divides-the-straight-line-that-joins-the-points-A-2-0-and-B-0-1-in-the-ratio-3-1-internally-Find-the-locus-of-PR




Question Number 124001 by Don08q last updated on 30/Nov/20
A variable point P(x, y) moves on the  curve  xy = 6 and R is the point which   divides the straight line that joins the  points A(−2, 0)  and  B(0, −1) in the  ratio 3:1, internally. Find the locus of  PR.
$$\mathrm{A}\:\mathrm{variable}\:\mathrm{point}\:{P}\left({x},\:{y}\right)\:\mathrm{moves}\:\mathrm{on}\:\mathrm{the} \\ $$$$\mathrm{curve}\:\:{xy}\:=\:\mathrm{6}\:\mathrm{and}\:{R}\:\mathrm{is}\:\mathrm{the}\:\mathrm{point}\:\mathrm{which}\: \\ $$$$\mathrm{divides}\:\mathrm{the}\:\mathrm{straight}\:\mathrm{line}\:\mathrm{that}\:\mathrm{joins}\:\mathrm{the} \\ $$$$\mathrm{points}\:{A}\left(−\mathrm{2},\:\mathrm{0}\right)\:\:\mathrm{and}\:\:{B}\left(\mathrm{0},\:−\mathrm{1}\right)\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{ratio}\:\mathrm{3}:\mathrm{1},\:\mathrm{internally}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{locus}\:\mathrm{of} \\ $$$${PR}. \\ $$
Answered by liberty last updated on 30/Nov/20
P(x, (6/x)) ⇒AR : RB = 3 : 1  ⇒r^→  = ((a^→ +3b^→ )/(1+3)) =  (((−(1/2))),((      0)) ) +  (((    0)),((−(3/4))) ) =  (((−(1/2))),((−(3/4))) )  R(−(1/2),−(3/4)). Let PR = λ   ⇒(√((x+(1/2))^2 +(y+(3/4))^2 )) = λ ;   ⇒ (x+(1/2))^2 +(y+(3/4))^2 = λ^2  ; put → { ((x=1)),((y=6)) :}  substitute ⇒(1+(1/2))^2 +(6+(3/4))^2 = λ^2   ⇒(9/4)+((729)/(16)) = ((36+729)/(16))=((765)/(16))=λ^2   Thus the locus of PR is      (x+(1/2))^2 +(y+(3/4))^2 = ((765)/(16)).
$${P}\left({x},\:\frac{\mathrm{6}}{{x}}\right)\:\Rightarrow{AR}\::\:{RB}\:=\:\mathrm{3}\::\:\mathrm{1} \\ $$$$\Rightarrow\overset{\rightarrow} {{r}}\:=\:\frac{\overset{\rightarrow} {{a}}+\mathrm{3}\overset{\rightarrow} {{b}}}{\mathrm{1}+\mathrm{3}}\:=\:\begin{pmatrix}{−\frac{\mathrm{1}}{\mathrm{2}}}\\{\:\:\:\:\:\:\mathrm{0}}\end{pmatrix}\:+\:\begin{pmatrix}{\:\:\:\:\mathrm{0}}\\{−\frac{\mathrm{3}}{\mathrm{4}}}\end{pmatrix}\:=\:\begin{pmatrix}{−\frac{\mathrm{1}}{\mathrm{2}}}\\{−\frac{\mathrm{3}}{\mathrm{4}}}\end{pmatrix} \\ $$$${R}\left(−\frac{\mathrm{1}}{\mathrm{2}},−\frac{\mathrm{3}}{\mathrm{4}}\right).\:{Let}\:{PR}\:=\:\lambda\: \\ $$$$\Rightarrow\sqrt{\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\left({y}+\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{2}} }\:=\:\lambda\:;\: \\ $$$$\Rightarrow\:\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\left({y}+\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{2}} =\:\lambda^{\mathrm{2}} \:;\:{put}\:\rightarrow\begin{cases}{{x}=\mathrm{1}}\\{{y}=\mathrm{6}}\end{cases} \\ $$$${substitute}\:\Rightarrow\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\mathrm{6}+\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{2}} =\:\lambda^{\mathrm{2}} \\ $$$$\Rightarrow\frac{\mathrm{9}}{\mathrm{4}}+\frac{\mathrm{729}}{\mathrm{16}}\:=\:\frac{\mathrm{36}+\mathrm{729}}{\mathrm{16}}=\frac{\mathrm{765}}{\mathrm{16}}=\lambda^{\mathrm{2}} \\ $$$${Thus}\:{the}\:{locus}\:{of}\:{PR}\:{is}\: \\ $$$$\:\:\:\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\left({y}+\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{2}} =\:\frac{\mathrm{765}}{\mathrm{16}}.\: \\ $$
Commented by Don08q last updated on 30/Nov/20
Thank you very much Sir.
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *