Menu Close

A-vertical-post-of-height-h-m-rises-from-a-plane-which-slopes-down-towards-the-South-at-an-angle-to-the-horizontal-Prove-that-the-length-of-its-shadow-when-the-sun-is-S-W-at-an-elevation-is-




Question Number 115642 by 24224 Opiyo Kamuki last updated on 27/Sep/20
A vertical post of height h m rises from a plane which   slopes down towards the South at an angle  α to the horizontal. Prove that the length  of its shadow when the sun is S𝛉W    at an elevation β is    ((h(√((1+tan^2 α cos^2 θ) )))/(tanβ + tanα cos θ))m
$${A}\:{vertical}\:{post}\:{of}\:{height}\:{h}\:{m}\:{rises}\:{from}\:{a}\:{plane}\:{which}\: \\ $$$${slopes}\:{down}\:{towards}\:{the}\:{South}\:{at}\:{an}\:{angle} \\ $$$$\alpha\:{to}\:{the}\:{horizontal}.\:{Prove}\:{that}\:{the}\:{length} \\ $$$${of}\:{its}\:{shadow}\:{when}\:{the}\:{sun}\:{is}\:\boldsymbol{{S}\theta{W}}\:\: \\ $$$${at}\:{an}\:{elevation}\:\beta\:{is} \\ $$$$ \\ $$$$\frac{{h}\sqrt{\left(\mathrm{1}+{tan}^{\mathrm{2}} \alpha\:{cos}^{\mathrm{2}} \theta\right)\:}}{{tan}\beta\:+\:{tan}\alpha\:\mathrm{cos}\:\theta}{m} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *