Menu Close

A-wave-has-a-wavelength-of-1-5m-calculate-the-phase-angle-between-a-point-0-25m-from-the-peak-of-the-wave-and-another-point-1m-further-along-the-same-peak-




Question Number 38924 by NECx last updated on 01/Jul/18
A wave has a wavelength of 1.5m,  calculate the phase angle between  a point 0.25m from the peak of the  wave and another point 1m further  along the same peak.
$${A}\:{wave}\:{has}\:{a}\:{wavelength}\:{of}\:\mathrm{1}.\mathrm{5}{m}, \\ $$$${calculate}\:{the}\:{phase}\:{angle}\:{between} \\ $$$${a}\:{point}\:\mathrm{0}.\mathrm{25}{m}\:{from}\:{the}\:{peak}\:{of}\:{the} \\ $$$${wave}\:{and}\:{another}\:{point}\:\mathrm{1}{m}\:{further} \\ $$$${along}\:{the}\:{same}\:{peak}. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 01/Jul/18
φ_1 =((2Πx)/λ)=((2Π×0.25)/(1.5))=((2Π×25×10)/(100×15))=(Π/3)  ∅_2 =((2Πx)/λ)=((2Π×1)/(1.5))=((4Π)/3)  △φ=((4Π)/3)−(Π/3)=Π
$$\phi_{\mathrm{1}} =\frac{\mathrm{2}\Pi{x}}{\lambda}=\frac{\mathrm{2}\Pi×\mathrm{0}.\mathrm{25}}{\mathrm{1}.\mathrm{5}}=\frac{\mathrm{2}\Pi×\mathrm{25}×\mathrm{10}}{\mathrm{100}×\mathrm{15}}=\frac{\Pi}{\mathrm{3}} \\ $$$$\emptyset_{\mathrm{2}} =\frac{\mathrm{2}\Pi{x}}{\lambda}=\frac{\mathrm{2}\Pi×\mathrm{1}}{\mathrm{1}.\mathrm{5}}=\frac{\mathrm{4}\Pi}{\mathrm{3}} \\ $$$$\bigtriangleup\phi=\frac{\mathrm{4}\Pi}{\mathrm{3}}−\frac{\Pi}{\mathrm{3}}=\Pi \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *