Menu Close

a-x-1-ax-dx-a-gt-0-




Question Number 127190 by bramlexs22 last updated on 27/Dec/20
 ∫ (((√a)−(√x))/(1−(√(ax)))) dx =? ; a>0
ax1axdx=?;a>0
Answered by Dwaipayan Shikari last updated on 27/Dec/20
⇒ax=u^2 ⇒a=2u(du/dx)  2∫(((√a)−(u/( (√a))))/(1−u)).(u/a)du = (2/( (√a^3 )))∫((a−u)/(1−u))du=(2/( (√a^3 )))u+(2/( (√a^3 )))∫((a−1)/(1−u))du  =(2/( (√a^3 )))u−((2(a−1))/( (√a^3 )))log(1−u)+C=((2(√x))/a)−((2(a−1))/( (√a^3 )))log(1−(√(ax)))+C
ax=u2a=2ududx2aua1u.uadu=2a3au1udu=2a3u+2a3a11udu=2a3u2(a1)a3log(1u)+C=2xa2(a1)a3log(1ax)+C
Answered by liberty last updated on 27/Dec/20
I=∫ (((√a)−(√x))/(1−(√(ax)))) dx ; take w=1−(√(ax))     dx = −((2(1−w))/a) dw  I=∫ (((√a)−((1−w)/( (√a))))/w) (−((2(1−w))/a))dw  I= −(2/(a(√a))) ∫ (((a−1)/w)+(2−a)−w)dw  I=−(2/(a(√a))) [ (a−1)ln w +(2−a)w−(w^2 /2) ]+c  I= (1/(a(√a))) [ 2(1−a)(√(ax)) + ax−2(a−1)ln (1−(√(ax)) )] + c
I=ax1axdx;takew=1axdx=2(1w)adwI=a1waw(2(1w)a)dwI=2aa(a1w+(2a)w)dwI=2aa[(a1)lnw+(2a)ww22]+cI=1aa[2(1a)ax+ax2(a1)ln(1ax)]+c

Leave a Reply

Your email address will not be published. Required fields are marked *