Menu Close

a-x-2-y-2-b-x-y-c-amp-x-2-y-2-R-2-Solve-for-x-or-y-




Question Number 47966 by ajfour last updated on 17/Nov/18
a(x^2 +y^2 )+b(x+y)= c   &    x^2 −y^2  = R^2   Solve for x or y .
$${a}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)+{b}\left({x}+{y}\right)=\:{c} \\ $$$$\:\&\:\:\:\:{x}^{\mathrm{2}} −{y}^{\mathrm{2}} \:=\:{R}^{\mathrm{2}} \\ $$$${Solve}\:{for}\:{x}\:{or}\:{y}\:. \\ $$
Commented by behi83417@gmail.com last updated on 17/Nov/18
x+y=t,x−y=s⇒4xy=t^2 −s^2   a(t^2 −((t^2 −s^2 )/2))+bt=c,ts=R^2   ⇒a(t^2 +s^2 )+2bt=2c⇒a(t^2 +(R^4 /t^2 ))+2bt=2c  ⇒at^4 +2bt^3 +2ct^2 +aR^4 =0  ⇒t^4 +((2b)/a)t^3 +((2c)/a)t^2 +R^4 =0  by having numeric valves ,we can  solve this for t and then s.
$${x}+{y}={t},{x}−{y}={s}\Rightarrow\mathrm{4}{xy}={t}^{\mathrm{2}} −{s}^{\mathrm{2}} \\ $$$${a}\left({t}^{\mathrm{2}} −\frac{{t}^{\mathrm{2}} −{s}^{\mathrm{2}} }{\mathrm{2}}\right)+{bt}={c},{ts}={R}^{\mathrm{2}} \\ $$$$\Rightarrow{a}\left({t}^{\mathrm{2}} +{s}^{\mathrm{2}} \right)+\mathrm{2}{bt}=\mathrm{2}{c}\Rightarrow{a}\left({t}^{\mathrm{2}} +\frac{{R}^{\mathrm{4}} }{{t}^{\mathrm{2}} }\right)+\mathrm{2}{bt}=\mathrm{2}{c} \\ $$$$\Rightarrow{at}^{\mathrm{4}} +\mathrm{2}{bt}^{\mathrm{3}} +\mathrm{2}{ct}^{\mathrm{2}} +{aR}^{\mathrm{4}} =\mathrm{0} \\ $$$$\Rightarrow{t}^{\mathrm{4}} +\frac{\mathrm{2}{b}}{{a}}{t}^{\mathrm{3}} +\frac{\mathrm{2}{c}}{{a}}{t}^{\mathrm{2}} +{R}^{\mathrm{4}} =\mathrm{0} \\ $$$${by}\:{having}\:{numeric}\:{valves}\:,{we}\:{can} \\ $$$${solve}\:{this}\:{for}\:\boldsymbol{{t}}\:{and}\:{then}\:\boldsymbol{{s}}. \\ $$
Answered by MJS last updated on 17/Nov/18
x+y=((c−a(x^2 +y^2 ))/b)  x+y=(R^2 /(x−y))  ((c−a(x^2 +y^2 ))/b)=(R^2 /(x−y))  x^3 −yx^2 +((ay^2 −c)/a)x+((bR^2 −y(ay^2 −c))/a)=0  x=z+(y/3)  z^3 +((2ay^2 −3c)/(3a))z+((27bR^2 −2y(10ay^2 −9c))/(27a))=0  and this can be solved...
$${x}+{y}=\frac{{c}−{a}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)}{{b}} \\ $$$${x}+{y}=\frac{{R}^{\mathrm{2}} }{{x}−{y}} \\ $$$$\frac{{c}−{a}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)}{{b}}=\frac{{R}^{\mathrm{2}} }{{x}−{y}} \\ $$$${x}^{\mathrm{3}} −{yx}^{\mathrm{2}} +\frac{{ay}^{\mathrm{2}} −{c}}{{a}}{x}+\frac{{bR}^{\mathrm{2}} −{y}\left({ay}^{\mathrm{2}} −{c}\right)}{{a}}=\mathrm{0} \\ $$$${x}={z}+\frac{{y}}{\mathrm{3}} \\ $$$${z}^{\mathrm{3}} +\frac{\mathrm{2}{ay}^{\mathrm{2}} −\mathrm{3}{c}}{\mathrm{3}{a}}{z}+\frac{\mathrm{27}{bR}^{\mathrm{2}} −\mathrm{2}{y}\left(\mathrm{10}{ay}^{\mathrm{2}} −\mathrm{9}{c}\right)}{\mathrm{27}{a}}=\mathrm{0} \\ $$$$\mathrm{and}\:\mathrm{this}\:\mathrm{can}\:\mathrm{be}\:\mathrm{solved}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *