Menu Close

a-x-b-y-c-z-1-3-a-2b-c-2-and-2y-3z-1-x-how-is-solution-this-qution-solve-by-the-Properties-of-proportion-




Question Number 187087 by mustafazaheen last updated on 13/Feb/23
  (a/x)=(b/y)=(c/z)=(1/3)    ,a−2b+c=2  and  2y−3z=1    x=?  how is solution   this qution solve by the Properties of proportion
$$ \\ $$$$\frac{{a}}{{x}}=\frac{{b}}{{y}}=\frac{{c}}{{z}}=\frac{\mathrm{1}}{\mathrm{3}}\:\:\:\:,{a}−\mathrm{2}{b}+{c}=\mathrm{2}\:\:{and}\:\:\mathrm{2}{y}−\mathrm{3}{z}=\mathrm{1}\:\:\:\:{x}=? \\ $$$${how}\:{is}\:{solution} \\ $$$$\:{this}\:{qution}\:{solve}\:{by}\:{the}\:\mathrm{Properties}\:\mathrm{of}\:\mathrm{proportion} \\ $$$$ \\ $$$$ \\ $$
Commented by mr W last updated on 13/Feb/23
as i said in Q187020, you can′t   determine 6 unknowns when you   only have 5 conditions.   if you don′t accept my answer, you   can comment there instead of   posting the same question here   again.
$${as}\:{i}\:{said}\:{in}\:{Q}\mathrm{187020},\:{you}\:{can}'{t}\: \\ $$$${determine}\:\mathrm{6}\:{unknowns}\:{when}\:{you}\: \\ $$$${only}\:{have}\:\mathrm{5}\:{conditions}.\: \\ $$$${if}\:{you}\:{don}'{t}\:{accept}\:{my}\:{answer},\:{you}\: \\ $$$${can}\:{comment}\:{there}\:{instead}\:{of}\: \\ $$$${posting}\:{the}\:{same}\:{question}\:{here}\: \\ $$$${again}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *