Menu Close

a-x-bc-b-y-ca-c-z-ab-Prove-that-x-1-x-y-1-y-z-1-z-2-Without-using-log-a-b-c-




Question Number 191589 by MATHEMATICSAM last updated on 28/Apr/23
a^x  = bc, b^y  = ca, c^z  = ab.  Prove that, (x/(1 + x)) + (y/(1 + y)) + (z/(1 + z)) = 2.  (Without using log)  a ≠ b ≠ c
$${a}^{{x}} \:=\:{bc},\:{b}^{{y}} \:=\:{ca},\:{c}^{{z}} \:=\:{ab}. \\ $$$$\mathrm{Prove}\:\mathrm{that},\:\frac{{x}}{\mathrm{1}\:+\:{x}}\:+\:\frac{{y}}{\mathrm{1}\:+\:{y}}\:+\:\frac{{z}}{\mathrm{1}\:+\:{z}}\:=\:\mathrm{2}. \\ $$$$\left(\mathrm{Without}\:\mathrm{using}\:\mathrm{log}\right) \\ $$$${a}\:\neq\:{b}\:\neq\:{c} \\ $$
Commented by mr W last updated on 27/Apr/23
not true if  a=(1/2), b=1, c=2  x=y=z=−1
$${not}\:{true}\:{if} \\ $$$${a}=\frac{\mathrm{1}}{\mathrm{2}},\:{b}=\mathrm{1},\:{c}=\mathrm{2} \\ $$$${x}={y}={z}=−\mathrm{1} \\ $$
Answered by Rasheed.Sindhi last updated on 26/Apr/23
a^x  = bc, b^y  = ca, c^z  = ab.  Prove that, (x/(1 + x)) + (y/(1 + y)) + (z/(1 + z)) = 2.  a^x b^y c^z =(bc)(ca)(ab)=a^2 b^2 c^2   x=2,y=2,z=2      (x/(1 + x)) + (y/(1 + y)) + (z/(1 + z))    =(2/(1 + 2)) + (2/(1 + 2)) + (2/(1 + 2))   =(2/3)+(2/3)+(2/3)=(2/3)×3=2
$${a}^{{x}} \:=\:{bc},\:{b}^{{y}} \:=\:{ca},\:{c}^{{z}} \:=\:{ab}. \\ $$$$\mathrm{Prove}\:\mathrm{that},\:\frac{{x}}{\mathrm{1}\:+\:{x}}\:+\:\frac{{y}}{\mathrm{1}\:+\:{y}}\:+\:\frac{{z}}{\mathrm{1}\:+\:{z}}\:=\:\mathrm{2}. \\ $$$${a}^{{x}} {b}^{{y}} {c}^{{z}} =\left({bc}\right)\left({ca}\right)\left({ab}\right)={a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} \\ $$$${x}=\mathrm{2},{y}=\mathrm{2},{z}=\mathrm{2} \\ $$$$\:\:\:\:\frac{{x}}{\mathrm{1}\:+\:{x}}\:+\:\frac{{y}}{\mathrm{1}\:+\:{y}}\:+\:\frac{{z}}{\mathrm{1}\:+\:{z}}\: \\ $$$$\:=\frac{\mathrm{2}}{\mathrm{1}\:+\:\mathrm{2}}\:+\:\frac{\mathrm{2}}{\mathrm{1}\:+\:\mathrm{2}}\:+\:\frac{\mathrm{2}}{\mathrm{1}\:+\:\mathrm{2}}\: \\ $$$$=\frac{\mathrm{2}}{\mathrm{3}}+\frac{\mathrm{2}}{\mathrm{3}}+\frac{\mathrm{2}}{\mathrm{3}}=\frac{\mathrm{2}}{\mathrm{3}}×\mathrm{3}=\mathrm{2} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *