Menu Close

a-x-log-a-x-a-




Question Number 92135 by jagoll last updated on 05/May/20
a^x  = log _a  (x)  a=?
ax=loga(x)a=?
Commented by Tony Lin last updated on 05/May/20
when 0<x<e^(−e) , x has three solutions  when e^(−e) ≤a<1, x has one solution  when 1<a< e^(1/e) , x has two solutions  when a=e^(1/e) , x has one solution  when a>e^(1/e) , x has no solutions  ∴ when a^x =log_a x  ⇒aε(0,e^(1/e) ]\{1}
when0<x<ee,xhasthreesolutionswheneea<1,xhasonesolutionwhen1<a<e1e,xhastwosolutionswhena=e1e,xhasonesolutionwhena>e1e,xhasnosolutionswhenax=logaxaϵ(0,e1e]{1}
Commented by mr W last updated on 05/May/20
a=1 ⇒one solution x=1
a=1onesolutionx=1
Commented by jagoll last updated on 05/May/20
log _1 (1) defined?
log1(1)defined?
Commented by MJS last updated on 05/May/20
lim_(x→1)   log_x  x =lim_(x→1)  ((ln x)/(ln x)) =lim_(x→1)  1 =1  also log_0  0 =1  log_z  z =1 ∀z∈C
limx1logxx=limx1lnxlnx=limx11=1alsolog00=1logzz=1zC
Commented by Tony Lin last updated on 05/May/20
a^a^x  =x  a^x lna=lnx  (xlna)e^(xlna) =xlnx  xlna=W(xlnx)  a=e^((W(xlnx))/x)
aax=xaxlna=lnx(xlna)exlna=xlnxxlna=W(xlnx)a=eW(xlnx)x

Leave a Reply

Your email address will not be published. Required fields are marked *