Menu Close

a-xy-x-y-b-xz-x-z-and-c-yz-y-z-Represent-x-in-a-b-c-form-x-y-z-0-




Question Number 191595 by MATHEMATICSAM last updated on 26/Apr/23
a = ((xy)/(x + y)) , b = ((xz)/(x + z)) and c = ((yz)/(y + z)) .  Represent x in a, b, c form. [x, y, z ≠ 0]
$${a}\:=\:\frac{{xy}}{{x}\:+\:{y}}\:,\:{b}\:=\:\frac{{xz}}{{x}\:+\:{z}}\:\mathrm{and}\:{c}\:=\:\frac{{yz}}{{y}\:+\:{z}}\:. \\ $$$$\mathrm{Represent}\:{x}\:\mathrm{in}\:{a},\:{b},\:{c}\:\mathrm{form}.\:\left[{x},\:{y},\:{z}\:\neq\:\mathrm{0}\right] \\ $$
Answered by mehdee42 last updated on 26/Apr/23
(1/a)=(1/x)+(1/y)   (i) ,  (1/b)=(1/x)+(1/z)  (ii)  ,   (1/c)=(1/y)+(1/z)  (iii)  (i),(ii)⇒(1/a)+(1/b)=(2/x)+(1/y)+(1/z)⇒^((iii)) (1/a)+(1/b)=(2/x)+(1/c)  ⇒x=((ac+bc−ab)/(2abc))  ✓
$$\frac{\mathrm{1}}{{a}}=\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}\:\:\:\left({i}\right)\:,\:\:\frac{\mathrm{1}}{{b}}=\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{z}}\:\:\left({ii}\right)\:\:,\:\:\:\frac{\mathrm{1}}{{c}}=\frac{\mathrm{1}}{{y}}+\frac{\mathrm{1}}{{z}}\:\:\left({iii}\right) \\ $$$$\left({i}\right),\left({ii}\right)\Rightarrow\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}=\frac{\mathrm{2}}{{x}}+\frac{\mathrm{1}}{{y}}+\frac{\mathrm{1}}{{z}}\overset{\left({iii}\right)} {\Rightarrow}\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}=\frac{\mathrm{2}}{{x}}+\frac{\mathrm{1}}{{c}} \\ $$$$\Rightarrow{x}=\frac{{ac}+{bc}−{ab}}{\mathrm{2}{abc}}\:\:\checkmark \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *