Menu Close

ab-ba-c3-find-a-b-2c-




Question Number 180938 by Shrinava last updated on 19/Nov/22
ab^(−)  + ba^(−)  = c3^(−)   find:   a+b+2c=?
$$\overline {\mathrm{ab}}\:+\:\overline {\mathrm{ba}}\:=\:\overline {\mathrm{c3}} \\ $$$$\mathrm{find}:\:\:\:\mathrm{a}+\mathrm{b}+\mathrm{2c}=? \\ $$
Answered by Rasheed.Sindhi last updated on 19/Nov/22
ab^(−)  + ba^(−)  = c3^(−)  ; a+b+2c=?  10a+b+10b+a=10c+3  11a+11b=10c+3  a+b=((10c+3)/(11)) ∈N ∧ 0≤c≤9  ⇒   c=3  a+b+2c=((10(3)+3)/(11))+2(3)=9
$$\overline {\mathrm{ab}}\:+\:\overline {\mathrm{ba}}\:=\:\overline {\mathrm{c3}}\:;\:\mathrm{a}+\mathrm{b}+\mathrm{2c}=? \\ $$$$\mathrm{10a}+\mathrm{b}+\mathrm{10b}+\mathrm{a}=\mathrm{10c}+\mathrm{3} \\ $$$$\mathrm{11a}+\mathrm{11b}=\mathrm{10c}+\mathrm{3} \\ $$$$\mathrm{a}+\mathrm{b}=\frac{\mathrm{10c}+\mathrm{3}}{\mathrm{11}}\:\in\mathbb{N}\:\wedge\:\mathrm{0}\leqslant\mathrm{c}\leqslant\mathrm{9} \\ $$$$\Rightarrow\:\:\:\mathrm{c}=\mathrm{3} \\ $$$$\mathrm{a}+\mathrm{b}+\mathrm{2c}=\frac{\mathrm{10}\left(\mathrm{3}\right)+\mathrm{3}}{\mathrm{11}}+\mathrm{2}\left(\mathrm{3}\right)=\mathrm{9} \\ $$
Answered by manxsol last updated on 19/Nov/22
ab +  ((ba)/(c3))  a,b≠0  a+b⟨10  posibilitaes   determinant ((a,b,c),(1,2,3),(2,1,3))  (a,b,c)=(1,2,3}  (a,b,c)=(2,1,3)  a+b+2c=9
$${ab}\:+ \\ $$$$\frac{{ba}}{{c}\mathrm{3}} \\ $$$${a},{b}\neq\mathrm{0}\:\:{a}+{b}\langle\mathrm{10} \\ $$$${posibilitaes} \\ $$$$\begin{array}{|c|c|c|}{{a}}&\hline{{b}}&\hline{{c}}\\{\mathrm{1}}&\hline{\mathrm{2}}&\hline{\mathrm{3}}\\{\mathrm{2}}&\hline{\mathrm{1}}&\hline{\mathrm{3}}\\\hline\end{array} \\ $$$$\left({a},{b},{c}\right)=\left(\mathrm{1},\mathrm{2},\mathrm{3}\right\} \\ $$$$\left({a},{b},{c}\right)=\left(\mathrm{2},\mathrm{1},\mathrm{3}\right) \\ $$$${a}+{b}+\mathrm{2}{c}=\mathrm{9} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *