Menu Close

abc-64-a-b-c-R-Find-K-that-satisfy-to-the-inequality-a-b-ab-b-c-bc-c-a-ca-abc-a-b-c-K-




Question Number 59273 by naka3546 last updated on 07/May/19
abc  =  64  a, b, c  ∈  R^+   Find  K  that  satisfy  to  the  inequality  :       (((a + b) (√(ab))  +  (b + c) (√(bc))  +  (c + a) (√(ca)))/( (√(abc))))   ≥  (√a)  +  (√b)  +  (√c)  +  K  .
abc=64a,b,cR+FindKthatsatisfytotheinequality:(a+b)ab+(b+c)bc+(c+a)caabca+b+c+K.
Answered by tanmay last updated on 07/May/19
((a+b)/2)≥(√(ab))   (a+b)≥2(√(ab))   (a+b)(√(ab)) ≥2ab  so (a+b)(√(ab)) +(b+c)(√(bc)) +(c+a)(√(ac)) ≥2(ab+bc+ca)  LHS  (N_r /D_r )≥((2(ab+bc+ca))/( (√(abc))))  (N_r /D_r )≥((ab+bc+ca)/4)  ((a+b+c)/3)≥(abc)^(1/3)   (a+b+c)≥12  ★now ((ab+bc+ca)/3)≥(ab×bc×ca)^(1/3)   ((ab+bc+ca)/3)≥(abc)^(2/3)   ((ab+bc+ca)/4)≥(3/4)×(64)^(2/3)   ((ab+bc+ca)/4)≥(3/4)×16  ((ab+bc+ca)/4)≥12★  (N_r /D_r )≥((ab+bc+ca)/4)  (N_r /D_r )≥((ab+bc+ca)/4)≥12  RHS  (√a) +(√b) +(√c) +(√k)   (((√a) +(√b) +(√c) )/3)≥((√a) ×(√b) ×(√c) )^(1/3)   (((√a) +(√b) +(√c) )/3)≥(abc)^(1/6)   ((√a) +(√b) +(√c) )/3 ≥(64)^(1/6)    ←correction after Naka sir detected  (√a) +(√b) +(√c) ≥2×3=6  so  (N_r /D_r )≥((ab+bc+ca)/4)≥12≥6+k  so when 12=6+k      k=6  when 12≥6+k  6≥k  i have just tried...
a+b2ab(a+b)2ab(a+b)ab2abso(a+b)ab+(b+c)bc+(c+a)ac2(ab+bc+ca)LHSNrDr2(ab+bc+ca)abcNrDrab+bc+ca4a+b+c3(abc)13(a+b+c)12nowab+bc+ca3(ab×bc×ca)13ab+bc+ca3(abc)23ab+bc+ca434×(64)23ab+bc+ca434×16ab+bc+ca412NrDrab+bc+ca4NrDrab+bc+ca412RHSa+b+c+ka+b+c3(a×b×c)13a+b+c3(abc)16(a+b+c)/3(64)16correctionafterNakasirdetecteda+b+c2×3=6soNrDrab+bc+ca4126+ksowhen12=6+kk=6when126+k6kihavejusttried
Commented by naka3546 last updated on 07/May/19
(√a)  +  (√b)  +  (√c)   ≥  3∙2  =  6  ?  (N_r /D_r )≥((ab+bc+ca)/4)≥12≥2+k     so when 12 = 6 + k      k = 6     K  =  6
a+b+c32=6?NrDrab+bc+ca4122+ksowhen12=6+kk=6K=6
Commented by tanmay last updated on 07/May/19
thank you sir for your kind perusal and detection  of error...
thankyousirforyourkindperusalanddetectionoferror

Leave a Reply

Your email address will not be published. Required fields are marked *