Question Number 13434 by Nayon last updated on 20/May/17
$$\Delta{ABC}\sim\Delta{DEF}\: \\ $$$$\Delta{ABC}=\mathrm{25} \\ $$$$\Delta{DEF}=\mathrm{35} \\ $$$$\frac{\Sigma{Madian}^{\mathrm{2}} {of}\:\Delta{ABC}}{\Sigma{Madian}^{\mathrm{2}} \:{of}\:\Delta{DEF}}=? \\ $$
Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 25/May/17
$$\Sigma{m}^{\mathrm{2}} =\frac{\mathrm{2}\left({b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)−{a}^{\mathrm{2}} }{\mathrm{4}}+\frac{\mathrm{2}\left({a}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)−{b}^{\mathrm{2}} }{\mathrm{4}}+\frac{\mathrm{2}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)−{c}^{\mathrm{2}} }{\mathrm{4}}= \\ $$$$=\frac{\mathrm{3}}{\mathrm{4}}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)=\frac{\mathrm{3}}{\mathrm{4}}\Sigma{a}^{\mathrm{2}} \\ $$$$\Delta{ABC}\backsim\Delta{DEF}\Rightarrow\frac{\mathrm{1}}{{k}^{\mathrm{2}} }=\frac{{S}_{{ABC}} }{{S}_{{DEF}} }=\frac{\mathrm{25}}{\mathrm{35}}=\frac{\mathrm{5}}{\mathrm{7}} \\ $$$$\frac{{a}}{{a}^{'} }=\frac{{b}}{{b}^{'} }=\frac{{c}}{{c}^{'} }=\frac{\mathrm{1}}{{k}}=\sqrt{\frac{\mathrm{5}}{\mathrm{7}}} \\ $$$$\Rightarrow\frac{\Sigma{m}_{{ABC}} ^{\mathrm{2}} }{\Sigma{m}_{{DEF}} ^{\mathrm{2}} }=\frac{\Sigma{a}^{\mathrm{2}} }{\Sigma{a}^{'^{\mathrm{2}} } }=\frac{\Sigma{a}^{\mathrm{2}} }{{k}^{\mathrm{2}} \Sigma{a}^{\mathrm{2}} }=\frac{\mathrm{1}}{{k}^{\mathrm{2}} }=\frac{\mathrm{5}}{\mathrm{7}}.\blacksquare \\ $$
Answered by mrW1 last updated on 20/May/17
$$\frac{\Sigma{Madian}^{\mathrm{2}} {of}\:\Delta{ABC}}{\Sigma{Madian}^{\mathrm{2}} \:{of}\:\Delta{DEF}}=\left(\frac{{side}\:{length}\:{of}\:\Delta{ABC}}{{side}\:{length}\:{of}\:\Delta{DEF}}\right)^{\mathrm{2}} \\ $$$$\frac{{area}\:{of}\:\Delta{ABC}}{{area}\:{of}\:\Delta{DEF}}=\left(\frac{{side}\:{length}\:{of}\:\Delta{ABC}}{{side}\:{length}\:{of}\:\Delta{DEF}}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\frac{\Sigma{Madian}^{\mathrm{2}} {of}\:\Delta{ABC}}{\Sigma{Madian}^{\mathrm{2}} \:{of}\:\Delta{DEF}}=\frac{{area}\:{of}\:\Delta{ABC}}{{area}\:{of}\:\Delta{DEF}}=\frac{\mathrm{25}}{\mathrm{35}}=\frac{\mathrm{5}}{\mathrm{7}} \\ $$