Menu Close

ABC-with-sides-a-b-c-Z-and-A-3-B-If-its-circumference-is-minimum-then-find-a-b-c-




Question Number 21973 by Joel577 last updated on 08/Oct/17
ΔABC with sides a, b, c ∈ Z and ∠A = 3∠B  If its circumference is minimum, then  find a, b, c
ΔABCwithsidesa,b,cZandA=3BIfitscircumferenceisminimum,thenfinda,b,c
Commented by Rasheed.Sindhi last updated on 08/Oct/17
Let ∠B=θ⇒∠A=3θ , ∠C=π−4θ  Let a,b & c are respective opposite  sides of ∠A,∠B & ∠C.  sine law:(a/(sin(3θ)))=(b/(sin(θ)))=(c/(sin(π−4θ)))=k(say)      a=k sin(3θ), b=k sin(θ),      c=k sin(π−4θ)  a,b,c∈Z⇒(a/b),(b/c),(a/c) ...∈Q  ((sin(θ))/(sin(3θ))),((sin(θ))/(sin(π−4θ))),((sin(3θ))/(sin(π−4θ))) etc  are rational numbers.  ⋮     a=(√(b^2 +c^2 −2bc cos(3θ) ))    ⋮
LetB=θA=3θ,C=π4θLeta,b&carerespectiveoppositesidesofA,B&C.sinelaw:asin(3θ)=bsin(θ)=csin(π4θ)=k(say)a=ksin(3θ),b=ksin(θ),c=ksin(π4θ)a,b,cZab,bc,acQsin(θ)sin(3θ),sin(θ)sin(π4θ),sin(3θ)sin(π4θ)etcarerationalnumbers.a=b2+c22bccos(3θ)
Answered by ajfour last updated on 09/Oct/17
((sin 3θ)/a)=((sin θ)/b)=((sin (π−4θ))/c)   (∠B=θ)  p=a+b+c   =((bsin 3θ)/(sin θ))+b+((bsin 4θ)/(sin θ))  p is minimum , ⇒    3−4sin^2 θ+1+4cos θcos 2θ  is min.  ⇒  −8sin θcos θ−4sin θcos 2θ                   −8cos θsin 2θ=0  ⇒   2cos θ+cos 2θ+4cos^2 θ=0  ⇒   6cos^2 θ+2cos θ−1=0       cos θ=((−2±2(√7))/(12))        cos θ=((−1±(√7))/6)  let us choose cos θ=(((√7)−1)/6)  sin θ=(√(1−(((8−2(√7)))/(36))))           =((√(28+2(√7)))/6)   ........
sin3θa=sinθb=sin(π4θ)c(B=θ)p=a+b+c=bsin3θsinθ+b+bsin4θsinθpisminimum,34sin2θ+1+4cosθcos2θismin.8sinθcosθ4sinθcos2θ8cosθsin2θ=02cosθ+cos2θ+4cos2θ=06cos2θ+2cosθ1=0cosθ=2±2712cosθ=1±76letuschoosecosθ=716sinθ=1(827)36=28+276..

Leave a Reply

Your email address will not be published. Required fields are marked *