Menu Close

ABCD-is-a-cyclic-quadrilateral-x-y-z-are-the-distances-of-A-from-the-lines-BD-BC-CD-respectively-Prove-that-BD-x-BC-y-CD-z-




Question Number 21571 by Tinkutara last updated on 27/Sep/17
ABCD is a cyclic quadrilateral; x, y, z  are the distances of A from the lines  BD, BC, CD respectively. Prove that  ((BD)/x) = ((BC)/y) + ((CD)/z).
ABCDisacyclicquadrilateral;x,y,zarethedistancesofAfromthelinesBD,BC,CDrespectively.ProvethatBDx=BCy+CDz.
Answered by revenge last updated on 29/Sep/17
Commented by revenge last updated on 29/Sep/17
It can be proved that:  (i) ΔADE ∼ ΔABG  (ii) ΔADF ∼ ΔACG  (iii) ΔAFB ∼ ΔAEC  From (i), ((BG)/y)=((DE)/z)  ⇒ ((BC)/y)+((CD)/z)=((GC−GB)/y)+((CE+ED)/z)=((GC)/y)+((CE)/z) ...(∗)  From (ii), ((CG)/y)=((DF)/x) ...(1)  From (iii), ((CE)/z)=((FB)/x) ...(2)  Adding (1) & (2) with (∗), we get  ((BC)/y)+((CD)/z)=((DF+FB)/x)=((BD)/x)
Itcanbeprovedthat:(i)ΔADEΔABG(ii)ΔADFΔACG(iii)ΔAFBΔAECFrom(i),BGy=DEzBCy+CDz=GCGBy+CE+EDz=GCy+CEz()From(ii),CGy=DFx(1)From(iii),CEz=FBx(2)Adding(1)&(2)with(),wegetBCy+CDz=DF+FBx=BDx
Commented by Tinkutara last updated on 29/Sep/17
Thank you very much Sir!
ThankyouverymuchSir!

Leave a Reply

Your email address will not be published. Required fields are marked *