Menu Close

ABCD-is-a-square-with-center-O-I-is-the-middle-of-BC-1-q-is-geometric-transformation-defined-by-q-M-M-such-that-CM-CM-3DM-a-Determinate-the-invariant-point-of-q-b-show-that-q




Question Number 104744 by mathocean1 last updated on 23/Jul/20
ABCD is a square with center O.  I is the middle of [BC].  1) q is geometric transformation  defined by q: M→M′ such that  CM′^(→) =CM^(→) +3DM^(→) .  a)Determinate the invariant point  of q.  b) show that q is a homothety and   precise it ratio.
$${ABCD}\:{is}\:{a}\:{square}\:{with}\:{center}\:{O}. \\ $$$${I}\:{is}\:{the}\:{middle}\:{of}\:\left[{BC}\right]. \\ $$$$\left.\mathrm{1}\right)\:{q}\:{is}\:{geometric}\:{transformation} \\ $$$${defined}\:{by}\:{q}:\:{M}\rightarrow{M}'\:{such}\:{that} \\ $$$$\overset{\rightarrow} {{CM}'}=\overset{\rightarrow} {{CM}}+\mathrm{3}\overset{\rightarrow} {{DM}}. \\ $$$$\left.{a}\right){Determinate}\:{the}\:{invariant}\:{point} \\ $$$${of}\:{q}. \\ $$$$\left.{b}\right)\:{show}\:{that}\:{q}\:{is}\:{a}\:{homothety}\:{and}\: \\ $$$${precise}\:{it}\:{ratio}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *