Menu Close

ABCD-is-a-square-with-side-length-1-E-is-a-moving-point-between-B-amp-C-F-is-a-moving-point-between-C-amp-D-Find-the-maximum-radius-of-inscribed-circle-in-AEF-




Question Number 90456 by Tony Lin last updated on 23/Apr/20
ABCD is a square with side length=1  E is a moving point between B&C  F is a moving point between C&D  Find the maximum radius of inscribed  circle in △AEF
ABCDisasquarewithsidelength=1EisamovingpointbetweenB&CFisamovingpointbetweenC&DFindthemaximumradiusofinscribedcircleinAEF
Answered by mr W last updated on 23/Apr/20
r=((√2)/2)(1−tan θ)tan ((π/8)+(θ/2))  r_(max) =0.3032 at θ=9.3719°
r=22(1tanθ)tan(π8+θ2)rmax=0.3032atθ=9.3719°
Commented by Tony Lin last updated on 24/Apr/20
Sir MrW, could you please enumerate  how to do it?
SirMrW,couldyoupleaseenumeratehowtodoit?
Answered by ajfour last updated on 24/Apr/20
Commented by ajfour last updated on 24/Apr/20
∠EAG=(π/4)−θ  ,  AE=sec θ  2φ=(π/4)+θ    ⇒  φ=(π/8)+(θ/2)   EG=AEcos (2φ)          = sec θcos ((π/4)+θ)     r=EGtan φ     r =(1/( (√2)))(1−tan θ)tan ((π/8)+(θ/2))    tan (π/8)=(√2)−1  let   tan (θ/2)=t    r=(1/( (√2)))(1−((2t)/(1−t^2 )))[((t+(√2)−1)/(1−t((√2)−1)))]  say  (√2)−1=a    r(√2)=(((1−t^2 −2t)(t+a))/((1−t^2 )(1−at)))       = ((−{t^3 +(a+2)t^2 +(2a−1)t−a})/(at^3 −t^2 −at+1))  ((d(r(√2)))/dt)=0  ⇒ (at^3 −t^2 −at+1){3t^2 +2(a+2)t+(2a−1)}     +(3at^2 −2t−a){t^3 +(a+2)t^2 +(2a−1)t−a}=0  ⇒  (a+1)^2 t^4 +4a^2 t^3 −2(a^2 +1)t^2                      −4t+(a−1)^2 =0    with  a=(√2)−1  ,   appropriate  t=0.08197  ⇒   θ_0  ≈9.3721°     r =(1/( (√2)))(1−tan θ_0 )tan ((π/8)+(θ_0 /2))  ⇒ r_(max) ≈0.3032
EAG=π4θ,AE=secθ2ϕ=π4+θϕ=π8+θ2EG=AEcos(2ϕ)=secθcos(π4+θ)r=EGtanϕr=12(1tanθ)tan(π8+θ2)tanπ8=21lettanθ2=tr=12(12t1t2)[t+211t(21)]say21=ar2=(1t22t)(t+a)(1t2)(1at)={t3+(a+2)t2+(2a1)ta}at3t2at+1d(r2)dt=0(at3t2at+1){3t2+2(a+2)t+(2a1)}+(3at22ta){t3+(a+2)t2+(2a1)ta}=0(a+1)2t4+4a2t32(a2+1)t24t+(a1)2=0witha=21,appropriatet=0.08197θ09.3721°r=12(1tanθ0)tan(π8+θ02)rmax0.3032
Commented by Tony Lin last updated on 24/Apr/20
thanks sir,I got it
thankssir,Igotit

Leave a Reply

Your email address will not be published. Required fields are marked *