Menu Close

ABCD-is-four-digits-integers-How-many-ABCD-that-suitable-with-A-B-C-D-25-




Question Number 57594 by naka3546 last updated on 08/Apr/19
ABCD  is  four  digits  integers .  How  many  ABCD  that  suitable  with  A+B+C+D  =  25 ?
ABCDisfourdigitsintegers.HowmanyABCDthatsuitablewithA+B+C+D=25?
Answered by mr W last updated on 08/Apr/19
A: 1,2,..,9  B,C,D: 0,1,2,..,9  A+B+C+D=25  (x+x^2 +x^3 +...+x^9 )(1+x+x^2 +x^3 +...+x^9 )^3   =((x(1−x^9 )(1−x^(10) )^3 )/((1−x)^4 ))  =((x(1−x^9 )(1−3x^(10) +3x^(20) −x^(30) ))/((1−x)^4 ))  =((x(1−x^9 −3x^(10) +3x^(19) +3x^(20) +...))/((1−x)^4 ))  =x(1−x^9 −3x^(10) +3x^(19) +3x^(20) +...)Σ_(k=0) ^∞ C_3 ^(k+3) x^k   coef. of x^(25)  is  C_3 ^(27) −C_3 ^(18) −3C_3 ^(17) +3C_3 ^8 +3C_3 ^7 =2925−816−3×680+3×56+3×35=342  ⇒there are 342 suitable numbers.
A:1,2,..,9B,C,D:0,1,2,..,9A+B+C+D=25(x+x2+x3++x9)(1+x+x2+x3++x9)3=x(1x9)(1x10)3(1x)4=x(1x9)(13x10+3x20x30)(1x)4=x(1x93x10+3x19+3x20+)(1x)4=x(1x93x10+3x19+3x20+)k=0C3k+3xkcoef.ofx25isC327C3183C317+3C38+3C37=29258163×680+3×56+3×35=342thereare342suitablenumbers.
Commented by mr W last updated on 08/Apr/19
for more details see Q21800.
formoredetailsseeQ21800.

Leave a Reply

Your email address will not be published. Required fields are marked *