Question Number 57594 by naka3546 last updated on 08/Apr/19
$${ABCD}\:\:{is}\:\:{four}\:\:{digits}\:\:{integers}\:. \\ $$$${How}\:\:{many}\:\:{ABCD}\:\:{that}\:\:{suitable}\:\:{with}\:\:{A}+{B}+{C}+{D}\:\:=\:\:\mathrm{25}\:? \\ $$
Answered by mr W last updated on 08/Apr/19
$${A}:\:\mathrm{1},\mathrm{2},..,\mathrm{9} \\ $$$${B},{C},{D}:\:\mathrm{0},\mathrm{1},\mathrm{2},..,\mathrm{9} \\ $$$${A}+{B}+{C}+{D}=\mathrm{25} \\ $$$$\left({x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +…+{x}^{\mathrm{9}} \right)\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +…+{x}^{\mathrm{9}} \right)^{\mathrm{3}} \\ $$$$=\frac{{x}\left(\mathrm{1}−{x}^{\mathrm{9}} \right)\left(\mathrm{1}−{x}^{\mathrm{10}} \right)^{\mathrm{3}} }{\left(\mathrm{1}−{x}\right)^{\mathrm{4}} } \\ $$$$=\frac{{x}\left(\mathrm{1}−{x}^{\mathrm{9}} \right)\left(\mathrm{1}−\mathrm{3}{x}^{\mathrm{10}} +\mathrm{3}{x}^{\mathrm{20}} −{x}^{\mathrm{30}} \right)}{\left(\mathrm{1}−{x}\right)^{\mathrm{4}} } \\ $$$$=\frac{{x}\left(\mathrm{1}−{x}^{\mathrm{9}} −\mathrm{3}{x}^{\mathrm{10}} +\mathrm{3}{x}^{\mathrm{19}} +\mathrm{3}{x}^{\mathrm{20}} +…\right)}{\left(\mathrm{1}−{x}\right)^{\mathrm{4}} } \\ $$$$={x}\left(\mathrm{1}−{x}^{\mathrm{9}} −\mathrm{3}{x}^{\mathrm{10}} +\mathrm{3}{x}^{\mathrm{19}} +\mathrm{3}{x}^{\mathrm{20}} +…\right)\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}{C}_{\mathrm{3}} ^{{k}+\mathrm{3}} {x}^{{k}} \\ $$$${coef}.\:{of}\:{x}^{\mathrm{25}} \:{is} \\ $$$${C}_{\mathrm{3}} ^{\mathrm{27}} −{C}_{\mathrm{3}} ^{\mathrm{18}} −\mathrm{3}{C}_{\mathrm{3}} ^{\mathrm{17}} +\mathrm{3}{C}_{\mathrm{3}} ^{\mathrm{8}} +\mathrm{3}{C}_{\mathrm{3}} ^{\mathrm{7}} =\mathrm{2925}−\mathrm{816}−\mathrm{3}×\mathrm{680}+\mathrm{3}×\mathrm{56}+\mathrm{3}×\mathrm{35}=\mathrm{342} \\ $$$$\Rightarrow{there}\:{are}\:\mathrm{342}\:{suitable}\:{numbers}. \\ $$
Commented by mr W last updated on 08/Apr/19
$${for}\:{more}\:{details}\:{see}\:{Q}\mathrm{21800}. \\ $$