Menu Close

About-the-solution-to-question-For-a-b-c-gt-0-and-abc-1-prove-a-b-c-b-c-a-c-a-b-1-Way-1-Let-s-say-a-b-c-We-can-prove-that-a-1-If-a-gt-1-we-will-get-b-a-gt-1-c-b-gt-1-abc-gt-1-but-abc-




Question Number 13333 by mrW1 last updated on 19/May/17
About the solution to question:  For a,b,c>0 and abc=1, prove  a^(b+c) b^(c+a) c^(a+b) ≤1    Way 1:  Let′s say a≤b≤c.  We can prove that a≤1:  If a>1, we will get b≥a>1, c≥b>1,  ⇒abc>1  but abc=1!   so a>1 is not true, i.e. a≤1.  Similarly we can also prove that c≥1:  If c<1, we will get b≤c<1, a≤b<1,  ⇒abc<1  but abc=1  so c<1 is not true, i.e. c≥1.    We know also   if p≤1, then p^x ≤1 for x≥0  if p≥1, then p^x ≥1 for x≥0    S=a^(b+c) b^(c+a) c^(a+b) =a^(b+c) ((1/(ac)))^(c+a) c^(a+b)   =(a^(b−a) /c^(c−b) )  since a≤1 and b−a≥0, we have  a^(b−a) ≤1  since c≥1 and c−b≥0, we have  c^(b−a) ≥1  ⇒S= (a^(b−a) /c^(c−b) )=((≤1)/(≥1))≤1    Way 2:  S=a^(b+c) b^(c+a) c^(a+b) =((a^(a+b+c) b^(c+a+b) c^(a+b+c) )/(a^a b^b c^c ))  =(((abc)^(a+b+c) )/(a^a b^b c^c ))=(1/(a^a b^b c^c ))=(1/(a^a b^b ((1/(ab)))^(1/(ab)) ))  =(((ab)^(1/(ab)) )/(a^a b^b ))  let′s look at function F(x,y)=(((xy)^(1/(xy)) )/(x^x y^y )),  the graph of F(x,y) see comment.    It has a maximum at (1,1) which  is F_(max) =1.  Hence for x, y>0, 0<F(x,y)≤1  ⇒S=(((ab)^(1/(ab)) )/(a^a b^b ))=F(a,b)=F(b,a)≤1
Aboutthesolutiontoquestion:Fora,b,c>0andabc=1,proveab+cbc+aca+b1Way1:Letssayabc.Wecanprovethata1:Ifa>1,wewillgetba>1,cb>1,abc>1butabc=1!soa>1isnottrue,i.e.a1.Similarlywecanalsoprovethatc1:Ifc<1,wewillgetbc<1,ab<1,abc<1butabc=1soc<1isnottrue,i.e.c1.Weknowalsoifp1,thenpx1forx0ifp1,thenpx1forx0S=ab+cbc+aca+b=ab+c(1ac)c+aca+b=abaccbsincea1andba0,wehaveaba1sincec1andcb0,wehavecba1S=abaccb=111Way2:S=ab+cbc+aca+b=aa+b+cbc+a+bca+b+caabbcc=(abc)a+b+caabbcc=1aabbcc=1aabb(1ab)1ab=(ab)1abaabbletslookatfunctionF(x,y)=(xy)1xyxxyy,thegraphofF(x,y)seecomment.Ithasamaximumat(1,1)whichisFmax=1.Henceforx,y>0,0<F(x,y)1S=(ab)1abaabb=F(a,b)=F(b,a)1
Commented by mrW1 last updated on 18/May/17
Commented by Abbas-Nahi last updated on 19/May/17
thanks for efforts
thanksforefforts
Commented by mrW1 last updated on 19/May/17
F(x,y)=(((xy)^(1/(xy)) )/(x^x y^y )) is really an interesting  function you can play with...
F(x,y)=(xy)1xyxxyyisreallyaninterestingfunctionyoucanplaywith
Commented by mrW1 last updated on 19/May/17
Commented by mrW1 last updated on 19/May/17

Leave a Reply

Your email address will not be published. Required fields are marked *