Menu Close

advanced-calculud-compute-i-




Question Number 127315 by mnjuly1970 last updated on 28/Dec/20
         ...advanced   calculud...      compute  :::       ψ(i)=??
advancedcalculudcompute:::ψ(i)=??
Commented by Dwaipayan Shikari last updated on 28/Dec/20
ψ(i)=−γ+∫_0 ^1 ((1−x^(i−1) )/(1−x))dx          =−γ+∫_0 ^1 ((x−x^i )/x)+((x−x^i )/(1−x))dx          = −γ+1+i+∫_0 ^1 ((x−x^i )/(1−x))dx  I(a)=∫_0 ^1 ((x−x^i )/(1−x))dx=∫_0 ^1 (((1−x−(1−x)^i )/x))e^(−ax) dx  I′(a)=∫_0 ^1 (1−x)^i e^(−ax) dx=∫_0 ^1 x^i e^(−a(1−x)) dx=e^(−a) ∫_0 ^1 x^i e^x dx  =e^(−a) Σ_(n=0) ^∞ (1/(n!(n+i)))  I(a)=−e^(−a) Σ_(n=1) ^∞ (1/(n!(n+i)))+C⇒I(0)=−Σ_(n=0) ^∞ (1/(n!(n+i)))  ψ(i)=1−γ+i−Σ_(n=0) ^∞ (1/(n!(n+i)))....
ψ(i)=γ+011xi11xdx=γ+01xxix+xxi1xdx=γ+1+i+01xxi1xdxI(a)=01xxi1xdx=01(1x(1x)ix)eaxdxI(a)=01(1x)ieaxdx=01xiea(1x)dx=ea01xiexdx=ean=01n!(n+i)I(a)=ean=11n!(n+i)+CI(0)=n=01n!(n+i)ψ(i)=1γ+in=01n!(n+i).
Commented by dsardor2004 last updated on 28/Dec/20
?
?
Answered by Olaf last updated on 28/Dec/20
Using series :  Re(ψ(i)) = −γ−Σ_(n=0) ^∞ ((n−1)/(n^3 +n^2 +n+1))  Re(ψ(i)) = −γ+1+Σ_(n=2) ^∞ (1/(n^4 −1))  Im(ψ(i)) = Σ_(n=0) ^∞ (1/(n^2 +1)) = (1/2)+(π/2)cotπ  ψ(i) = −γ+1+Σ_(n=2) ^∞ (1/(n^4 −1))+i((1+πcotπ)/2)
Usingseries:Re(ψ(i))=γn=0n1n3+n2+n+1Re(ψ(i))=γ+1+n=21n41Im(ψ(i))=n=01n2+1=12+π2cotπψ(i)=γ+1+n=21n41+i1+πcotπ2
Commented by mnjuly1970 last updated on 28/Dec/20
thank you ...
thankyou
Answered by mindispower last updated on 28/Dec/20
Ψ(i)=−γ+Σ_(n≥1) ((1/(n+1))−(1/(n+i)))  =−γ+Σ_(n≥0) ((1/(n+1))−((n−i)/(n^2 +1)))  =−γ+Σ_(n≥0) ((−n+1)/(n^3 +n^2 +n+1))+iΣ_(n≥0) (1/(n^2 +1))  ReΨ(i)=−γ−Σ_(n≥0) ((n−1)/(n^3 +n^2 +n+1))  Im(Ψ(i))=Σ_(n≥0) (1/(n^2 +1))=(1/2)(Σ_(−∞) ^∞ (1/(n^2 +1))+1)  =(1/2)(1−2Reπcoth(iπ).(1/(1−i)))  =(1/2)(1−Re(πicoth(π).(1+i))  =(1/2)(1+πcotth(π))  Im(Ψ(i))=(1/2)+(π/2)coth(π)  Re(Ψ(i))=−γ−Σ_(n≥1) ((n−1)/(n^3 +n^2 +n+1))..no close form   in elementry function
Ψ(i)=γ+n1(1n+11n+i)=γ+n0(1n+1nin2+1)=γ+n0n+1n3+n2+n+1+in01n2+1ReΨ(i)=γn0n1n3+n2+n+1Im(Ψ(i))=n01n2+1=12(1n2+1+1)=12(12Reπcoth(iπ).11i)=12(1Re(πicoth(π).(1+i))=12(1+πcotth(π))Im(Ψ(i))=12+π2coth(π)Re(Ψ(i))=γn1n1n3+n2+n+1..nocloseforminelementryfunction
Commented by mnjuly1970 last updated on 28/Dec/20
thank you so much sir power..
thankyousomuchsirpower..
Commented by mindispower last updated on 29/Dec/20
always pleasur sir
alwayspleasursir

Leave a Reply

Your email address will not be published. Required fields are marked *