Menu Close

Advanced-Calculus-0-1-ln-1-1-x-x-3-dx-3-2-3-solution-I-B-P-1-2x-2-ln-3-




Question Number 160734 by mnjuly1970 last updated on 05/Dec/21
              # Advanced   Calculus #          Φ = ∫_0 ^( 1) (((ln^   ( (1/(1− x))  ))/x) )^( 3) dx =^?  3 ( ζ (2 ) + ζ (3 ))        −−−−  solution−−−−          Φ =^(I.B.P)  [ (( 1)/(2x^( 2) )) ln^( 3) ( 1−x)]_0 ^1 +(3/2) ∫_0 ^( 1) (( ln^( 2)  (1− x ))/(x^( 2)  (1 − x ))) dx          = (1/2) lim_( ξ →1^(− ) )  ((ln^( 3) ( 1− ξ ))/ξ^( 2) )               +(3/2)[∫_0 ^( 1) (( ln^( 2) ( 1− x ))/x)dx = 2 ζ (3)]              + (3/2)[∫_0 ^( 1) (( ln^( 2) ( 1−x))/x^( 2) ) dx = (π^( 2) /3) = 2ζ (2 )]               +(3/2)∫_0 ^( 1) (( ln^( 2) (1− x))/(1−x)) dx}            =(1/2) lim_( ξ →1^( −) ) {((ln^( 3) ( 1−ξ ))/ξ^( 2) )  −ln^( 3) (1− ξ ) }             +(3/2) (2ζ (3 ))  +(3/2) ( 2ζ (2 ))            =  3(   ζ (3 ) + 3ζ (2 )  )       ■   m.n
You can't use 'macro parameter character #' in math modeΦ=01(ln(11x)x)3dx=?3(ζ(2)+ζ(3))solutionΦ=I.B.P[12x2ln3(1x)]01+3201ln2(1x)x2(1x)dx=12limξ1ln3(1ξ)ξ2+32[01ln2(1x)xdx=2ζ(3)]+32[01ln2(1x)x2dx=π23=2ζ(2)]+3201ln2(1x)1xdx}=12limξ1{ln3(1ξ)ξ2ln3(1ξ)}+32(2ζ(3))+32(2ζ(2))=3(ζ(3)+3ζ(2))◼m.n
Commented by Gbenga last updated on 06/Dec/21
can you teach me this sir
canyouteachmethissir

Leave a Reply

Your email address will not be published. Required fields are marked *